Spaces:
Sleeping
Sleeping
/* | |
* Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
* | |
* NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
* property and proprietary rights in and to this material, related | |
* documentation and any modifications thereto. Any use, reproduction, | |
* disclosure or distribution of this material and related documentation | |
* without an express license agreement from NVIDIA CORPORATION or | |
* its affiliates is strictly prohibited. | |
*/ | |
//------------------------------------------------------------------------ | |
// mesh.cu | |
void xfmPointsFwdKernel(XfmKernelParams p); | |
void xfmPointsBwdKernel(XfmKernelParams p); | |
//------------------------------------------------------------------------ | |
// loss.cu | |
void imgLossFwdKernel(LossKernelParams p); | |
void imgLossBwdKernel(LossKernelParams p); | |
//------------------------------------------------------------------------ | |
// normal.cu | |
void PrepareShadingNormalFwdKernel(PrepareShadingNormalKernelParams p); | |
void PrepareShadingNormalBwdKernel(PrepareShadingNormalKernelParams p); | |
//------------------------------------------------------------------------ | |
// cubemap.cu | |
void DiffuseCubemapFwdKernel(DiffuseCubemapKernelParams p); | |
void DiffuseCubemapBwdKernel(DiffuseCubemapKernelParams p); | |
void SpecularBoundsKernel(SpecularBoundsKernelParams p); | |
void SpecularCubemapFwdKernel(SpecularCubemapKernelParams p); | |
void SpecularCubemapBwdKernel(SpecularCubemapKernelParams p); | |
//------------------------------------------------------------------------ | |
// bsdf.cu | |
void LambertFwdKernel(LambertKernelParams p); | |
void LambertBwdKernel(LambertKernelParams p); | |
void FrostbiteDiffuseFwdKernel(FrostbiteDiffuseKernelParams p); | |
void FrostbiteDiffuseBwdKernel(FrostbiteDiffuseKernelParams p); | |
void FresnelShlickFwdKernel(FresnelShlickKernelParams p); | |
void FresnelShlickBwdKernel(FresnelShlickKernelParams p); | |
void ndfGGXFwdKernel(NdfGGXParams p); | |
void ndfGGXBwdKernel(NdfGGXParams p); | |
void lambdaGGXFwdKernel(NdfGGXParams p); | |
void lambdaGGXBwdKernel(NdfGGXParams p); | |
void maskingSmithFwdKernel(MaskingSmithParams p); | |
void maskingSmithBwdKernel(MaskingSmithParams p); | |
void pbrSpecularFwdKernel(PbrSpecular p); | |
void pbrSpecularBwdKernel(PbrSpecular p); | |
void pbrBSDFFwdKernel(PbrBSDF p); | |
void pbrBSDFBwdKernel(PbrBSDF p); | |
//------------------------------------------------------------------------ | |
// Tensor helpers | |
void update_grid(dim3 &gridSize, torch::Tensor x) | |
{ | |
gridSize.x = std::max(gridSize.x, (uint32_t)x.size(2)); | |
gridSize.y = std::max(gridSize.y, (uint32_t)x.size(1)); | |
gridSize.z = std::max(gridSize.z, (uint32_t)x.size(0)); | |
} | |
template<typename... Ts> | |
void update_grid(dim3& gridSize, torch::Tensor x, Ts&&... vs) | |
{ | |
gridSize.x = std::max(gridSize.x, (uint32_t)x.size(2)); | |
gridSize.y = std::max(gridSize.y, (uint32_t)x.size(1)); | |
gridSize.z = std::max(gridSize.z, (uint32_t)x.size(0)); | |
update_grid(gridSize, std::forward<Ts>(vs)...); | |
} | |
Tensor make_cuda_tensor(torch::Tensor val) | |
{ | |
Tensor res; | |
for (int i = 0; i < val.dim(); ++i) | |
{ | |
res.dims[i] = val.size(i); | |
res.strides[i] = val.stride(i); | |
} | |
res.fp16 = val.scalar_type() == torch::kBFloat16; | |
res.val = res.fp16 ? (void*)val.data_ptr<torch::BFloat16>() : (void*)val.data_ptr<float>(); | |
res.d_val = nullptr; | |
return res; | |
} | |
Tensor make_cuda_tensor(torch::Tensor val, dim3 outDims, torch::Tensor* grad = nullptr) | |
{ | |
Tensor res; | |
for (int i = 0; i < val.dim(); ++i) | |
{ | |
res.dims[i] = val.size(i); | |
res.strides[i] = val.stride(i); | |
} | |
if (val.dim() == 4) | |
res._dims[0] = outDims.z, res._dims[1] = outDims.y, res._dims[2] = outDims.x, res._dims[3] = val.size(3); | |
else | |
res._dims[0] = outDims.z, res._dims[1] = outDims.x, res._dims[2] = val.size(2), res._dims[3] = 1; // Add a trailing one for indexing math to work out | |
res.fp16 = val.scalar_type() == torch::kBFloat16; | |
res.val = res.fp16 ? (void*)val.data_ptr<torch::BFloat16>() : (void*)val.data_ptr<float>(); | |
res.d_val = nullptr; | |
if (grad != nullptr) | |
{ | |
if (val.dim() == 4) | |
*grad = torch::empty({ outDims.z, outDims.y, outDims.x, val.size(3) }, torch::TensorOptions().dtype(res.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA)); | |
else // 3 | |
*grad = torch::empty({ outDims.z, outDims.x, val.size(2) }, torch::TensorOptions().dtype(res.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA)); | |
res.d_val = res.fp16 ? (void*)grad->data_ptr<torch::BFloat16>() : (void*)grad->data_ptr<float>(); | |
} | |
return res; | |
} | |
//------------------------------------------------------------------------ | |
// prepare_shading_normal | |
torch::Tensor prepare_shading_normal_fwd(torch::Tensor pos, torch::Tensor view_pos, torch::Tensor perturbed_nrm, torch::Tensor smooth_nrm, torch::Tensor smooth_tng, torch::Tensor geom_nrm, bool two_sided_shading, bool opengl, bool fp16) | |
{ | |
CHECK_TENSOR(pos, 4, 3); | |
CHECK_TENSOR(view_pos, 4, 3); | |
CHECK_TENSOR(perturbed_nrm, 4, 3); | |
CHECK_TENSOR(smooth_nrm, 4, 3); | |
CHECK_TENSOR(smooth_tng, 4, 3); | |
CHECK_TENSOR(geom_nrm, 4, 3); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
PrepareShadingNormalKernelParams p; | |
p.two_sided_shading = two_sided_shading; | |
p.opengl = opengl; | |
p.out.fp16 = fp16; | |
update_grid(p.gridSize, pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
// Setup tensors | |
p.pos = make_cuda_tensor(pos, p.gridSize); | |
p.view_pos = make_cuda_tensor(view_pos, p.gridSize); | |
p.perturbed_nrm = make_cuda_tensor(perturbed_nrm, p.gridSize); | |
p.smooth_nrm = make_cuda_tensor(smooth_nrm, p.gridSize); | |
p.smooth_tng = make_cuda_tensor(smooth_tng, p.gridSize); | |
p.geom_nrm = make_cuda_tensor(geom_nrm, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)PrepareShadingNormalFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> prepare_shading_normal_bwd(torch::Tensor pos, torch::Tensor view_pos, torch::Tensor perturbed_nrm, torch::Tensor smooth_nrm, torch::Tensor smooth_tng, torch::Tensor geom_nrm, torch::Tensor grad, bool two_sided_shading, bool opengl) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
PrepareShadingNormalKernelParams p; | |
p.two_sided_shading = two_sided_shading; | |
p.opengl = opengl; | |
update_grid(p.gridSize, pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
// Setup tensors | |
torch::Tensor pos_grad, view_pos_grad, perturbed_nrm_grad, smooth_nrm_grad, smooth_tng_grad, geom_nrm_grad; | |
p.pos = make_cuda_tensor(pos, p.gridSize, &pos_grad); | |
p.view_pos = make_cuda_tensor(view_pos, p.gridSize, &view_pos_grad); | |
p.perturbed_nrm = make_cuda_tensor(perturbed_nrm, p.gridSize, &perturbed_nrm_grad); | |
p.smooth_nrm = make_cuda_tensor(smooth_nrm, p.gridSize, &smooth_nrm_grad); | |
p.smooth_tng = make_cuda_tensor(smooth_tng, p.gridSize, &smooth_tng_grad); | |
p.geom_nrm = make_cuda_tensor(geom_nrm, p.gridSize, &geom_nrm_grad); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)PrepareShadingNormalBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>(pos_grad, view_pos_grad, perturbed_nrm_grad, smooth_nrm_grad, smooth_tng_grad, geom_nrm_grad); | |
} | |
//------------------------------------------------------------------------ | |
// lambert | |
torch::Tensor lambert_fwd(torch::Tensor nrm, torch::Tensor wi, bool fp16) | |
{ | |
CHECK_TENSOR(nrm, 4, 3); | |
CHECK_TENSOR(wi, 4, 3); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
LambertKernelParams p; | |
p.out.fp16 = fp16; | |
update_grid(p.gridSize, nrm, wi); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
p.nrm = make_cuda_tensor(nrm, p.gridSize); | |
p.wi = make_cuda_tensor(wi, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)LambertFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
std::tuple<torch::Tensor, torch::Tensor> lambert_bwd(torch::Tensor nrm, torch::Tensor wi, torch::Tensor grad) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
LambertKernelParams p; | |
update_grid(p.gridSize, nrm, wi); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
torch::Tensor nrm_grad, wi_grad; | |
p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad); | |
p.wi = make_cuda_tensor(wi, p.gridSize, &wi_grad); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)LambertBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return std::tuple<torch::Tensor, torch::Tensor>(nrm_grad, wi_grad); | |
} | |
//------------------------------------------------------------------------ | |
// frostbite diffuse | |
torch::Tensor frostbite_fwd(torch::Tensor nrm, torch::Tensor wi, torch::Tensor wo, torch::Tensor linearRoughness, bool fp16) | |
{ | |
CHECK_TENSOR(nrm, 4, 3); | |
CHECK_TENSOR(wi, 4, 3); | |
CHECK_TENSOR(wo, 4, 3); | |
CHECK_TENSOR(linearRoughness, 4, 1); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
FrostbiteDiffuseKernelParams p; | |
p.out.fp16 = fp16; | |
update_grid(p.gridSize, nrm, wi, wo, linearRoughness); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
p.nrm = make_cuda_tensor(nrm, p.gridSize); | |
p.wi = make_cuda_tensor(wi, p.gridSize); | |
p.wo = make_cuda_tensor(wo, p.gridSize); | |
p.linearRoughness = make_cuda_tensor(linearRoughness, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FrostbiteDiffuseFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> frostbite_bwd(torch::Tensor nrm, torch::Tensor wi, torch::Tensor wo, torch::Tensor linearRoughness, torch::Tensor grad) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
FrostbiteDiffuseKernelParams p; | |
update_grid(p.gridSize, nrm, wi, wo, linearRoughness); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
torch::Tensor nrm_grad, wi_grad, wo_grad, linearRoughness_grad; | |
p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad); | |
p.wi = make_cuda_tensor(wi, p.gridSize, &wi_grad); | |
p.wo = make_cuda_tensor(wo, p.gridSize, &wo_grad); | |
p.linearRoughness = make_cuda_tensor(linearRoughness, p.gridSize, &linearRoughness_grad); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FrostbiteDiffuseBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>(nrm_grad, wi_grad, wo_grad, linearRoughness_grad); | |
} | |
//------------------------------------------------------------------------ | |
// fresnel_shlick | |
torch::Tensor fresnel_shlick_fwd(torch::Tensor f0, torch::Tensor f90, torch::Tensor cosTheta, bool fp16) | |
{ | |
CHECK_TENSOR(f0, 4, 3); | |
CHECK_TENSOR(f90, 4, 3); | |
CHECK_TENSOR(cosTheta, 4, 1); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
FresnelShlickKernelParams p; | |
p.out.fp16 = fp16; | |
update_grid(p.gridSize, f0, f90, cosTheta); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
p.f0 = make_cuda_tensor(f0, p.gridSize); | |
p.f90 = make_cuda_tensor(f90, p.gridSize); | |
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FresnelShlickFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> fresnel_shlick_bwd(torch::Tensor f0, torch::Tensor f90, torch::Tensor cosTheta, torch::Tensor grad) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
FresnelShlickKernelParams p; | |
update_grid(p.gridSize, f0, f90, cosTheta); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
torch::Tensor f0_grad, f90_grad, cosT_grad; | |
p.f0 = make_cuda_tensor(f0, p.gridSize, &f0_grad); | |
p.f90 = make_cuda_tensor(f90, p.gridSize, &f90_grad); | |
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosT_grad); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FresnelShlickBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>(f0_grad, f90_grad, cosT_grad); | |
} | |
//------------------------------------------------------------------------ | |
// ndf_ggd | |
torch::Tensor ndf_ggx_fwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, bool fp16) | |
{ | |
CHECK_TENSOR(alphaSqr, 4, 1); | |
CHECK_TENSOR(cosTheta, 4, 1); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
NdfGGXParams p; | |
p.out.fp16 = fp16; | |
update_grid(p.gridSize, alphaSqr, cosTheta); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize); | |
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)ndfGGXFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
std::tuple<torch::Tensor, torch::Tensor> ndf_ggx_bwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, torch::Tensor grad) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
NdfGGXParams p; | |
update_grid(p.gridSize, alphaSqr, cosTheta); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
torch::Tensor alphaSqr_grad, cosTheta_grad; | |
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad); | |
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosTheta_grad); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)ndfGGXBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return std::tuple<torch::Tensor, torch::Tensor>(alphaSqr_grad, cosTheta_grad); | |
} | |
//------------------------------------------------------------------------ | |
// lambda_ggx | |
torch::Tensor lambda_ggx_fwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, bool fp16) | |
{ | |
CHECK_TENSOR(alphaSqr, 4, 1); | |
CHECK_TENSOR(cosTheta, 4, 1); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
NdfGGXParams p; | |
p.out.fp16 = fp16; | |
update_grid(p.gridSize, alphaSqr, cosTheta); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize); | |
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)lambdaGGXFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
std::tuple<torch::Tensor, torch::Tensor> lambda_ggx_bwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, torch::Tensor grad) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
NdfGGXParams p; | |
update_grid(p.gridSize, alphaSqr, cosTheta); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
torch::Tensor alphaSqr_grad, cosTheta_grad; | |
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad); | |
p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosTheta_grad); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)lambdaGGXBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return std::tuple<torch::Tensor, torch::Tensor>(alphaSqr_grad, cosTheta_grad); | |
} | |
//------------------------------------------------------------------------ | |
// masking_smith | |
torch::Tensor masking_smith_fwd(torch::Tensor alphaSqr, torch::Tensor cosThetaI, torch::Tensor cosThetaO, bool fp16) | |
{ | |
CHECK_TENSOR(alphaSqr, 4, 1); | |
CHECK_TENSOR(cosThetaI, 4, 1); | |
CHECK_TENSOR(cosThetaO, 4, 1); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
MaskingSmithParams p; | |
p.out.fp16 = fp16; | |
update_grid(p.gridSize, alphaSqr, cosThetaI, cosThetaO); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize); | |
p.cosThetaI = make_cuda_tensor(cosThetaI, p.gridSize); | |
p.cosThetaO = make_cuda_tensor(cosThetaO, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)maskingSmithFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> masking_smith_bwd(torch::Tensor alphaSqr, torch::Tensor cosThetaI, torch::Tensor cosThetaO, torch::Tensor grad) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
MaskingSmithParams p; | |
update_grid(p.gridSize, alphaSqr, cosThetaI, cosThetaO); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
torch::Tensor alphaSqr_grad, cosThetaI_grad, cosThetaO_grad; | |
p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad); | |
p.cosThetaI = make_cuda_tensor(cosThetaI, p.gridSize, &cosThetaI_grad); | |
p.cosThetaO = make_cuda_tensor(cosThetaO, p.gridSize, &cosThetaO_grad); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)maskingSmithBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>(alphaSqr_grad, cosThetaI_grad, cosThetaO_grad); | |
} | |
//------------------------------------------------------------------------ | |
// pbr_specular | |
torch::Tensor pbr_specular_fwd(torch::Tensor col, torch::Tensor nrm, torch::Tensor wo, torch::Tensor wi, torch::Tensor alpha, float min_roughness, bool fp16) | |
{ | |
CHECK_TENSOR(col, 4, 3); | |
CHECK_TENSOR(nrm, 4, 3); | |
CHECK_TENSOR(wo, 4, 3); | |
CHECK_TENSOR(wi, 4, 3); | |
CHECK_TENSOR(alpha, 4, 1); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
PbrSpecular p; | |
p.out.fp16 = fp16; | |
p.min_roughness = min_roughness; | |
update_grid(p.gridSize, col, nrm, wo, wi, alpha); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
p.col = make_cuda_tensor(col, p.gridSize); | |
p.nrm = make_cuda_tensor(nrm, p.gridSize); | |
p.wo = make_cuda_tensor(wo, p.gridSize); | |
p.wi = make_cuda_tensor(wi, p.gridSize); | |
p.alpha = make_cuda_tensor(alpha, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrSpecularFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> pbr_specular_bwd(torch::Tensor col, torch::Tensor nrm, torch::Tensor wo, torch::Tensor wi, torch::Tensor alpha, float min_roughness, torch::Tensor grad) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
PbrSpecular p; | |
update_grid(p.gridSize, col, nrm, wo, wi, alpha); | |
p.min_roughness = min_roughness; | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
torch::Tensor col_grad, nrm_grad, wo_grad, wi_grad, alpha_grad; | |
p.col = make_cuda_tensor(col, p.gridSize, &col_grad); | |
p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad); | |
p.wo = make_cuda_tensor(wo, p.gridSize, &wo_grad); | |
p.wi = make_cuda_tensor(wi, p.gridSize, &wi_grad); | |
p.alpha = make_cuda_tensor(alpha, p.gridSize, &alpha_grad); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrSpecularBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>(col_grad, nrm_grad, wo_grad, wi_grad, alpha_grad); | |
} | |
//------------------------------------------------------------------------ | |
// pbr_bsdf | |
torch::Tensor pbr_bsdf_fwd(torch::Tensor kd, torch::Tensor arm, torch::Tensor pos, torch::Tensor nrm, torch::Tensor view_pos, torch::Tensor light_pos, float min_roughness, int BSDF, bool fp16) | |
{ | |
CHECK_TENSOR(kd, 4, 3); | |
CHECK_TENSOR(arm, 4, 3); | |
CHECK_TENSOR(pos, 4, 3); | |
CHECK_TENSOR(nrm, 4, 3); | |
CHECK_TENSOR(view_pos, 4, 3); | |
CHECK_TENSOR(light_pos, 4, 3); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
PbrBSDF p; | |
p.out.fp16 = fp16; | |
p.min_roughness = min_roughness; | |
p.BSDF = BSDF; | |
update_grid(p.gridSize, kd, arm, pos, nrm, view_pos, light_pos); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
p.kd = make_cuda_tensor(kd, p.gridSize); | |
p.arm = make_cuda_tensor(arm, p.gridSize); | |
p.pos = make_cuda_tensor(pos, p.gridSize); | |
p.nrm = make_cuda_tensor(nrm, p.gridSize); | |
p.view_pos = make_cuda_tensor(view_pos, p.gridSize); | |
p.light_pos = make_cuda_tensor(light_pos, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrBSDFFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> pbr_bsdf_bwd(torch::Tensor kd, torch::Tensor arm, torch::Tensor pos, torch::Tensor nrm, torch::Tensor view_pos, torch::Tensor light_pos, float min_roughness, int BSDF, torch::Tensor grad) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
PbrBSDF p; | |
update_grid(p.gridSize, kd, arm, pos, nrm, view_pos, light_pos); | |
p.min_roughness = min_roughness; | |
p.BSDF = BSDF; | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
torch::Tensor kd_grad, arm_grad, pos_grad, nrm_grad, view_pos_grad, light_pos_grad; | |
p.kd = make_cuda_tensor(kd, p.gridSize, &kd_grad); | |
p.arm = make_cuda_tensor(arm, p.gridSize, &arm_grad); | |
p.pos = make_cuda_tensor(pos, p.gridSize, &pos_grad); | |
p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad); | |
p.view_pos = make_cuda_tensor(view_pos, p.gridSize, &view_pos_grad); | |
p.light_pos = make_cuda_tensor(light_pos, p.gridSize, &light_pos_grad); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrBSDFBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>(kd_grad, arm_grad, pos_grad, nrm_grad, view_pos_grad, light_pos_grad); | |
} | |
//------------------------------------------------------------------------ | |
// filter_cubemap | |
torch::Tensor diffuse_cubemap_fwd(torch::Tensor cubemap) | |
{ | |
CHECK_TENSOR(cubemap, 4, 3); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
DiffuseCubemapKernelParams p; | |
update_grid(p.gridSize, cubemap); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
// Setup tensors | |
p.cubemap = make_cuda_tensor(cubemap, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)DiffuseCubemapFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
torch::Tensor diffuse_cubemap_bwd(torch::Tensor cubemap, torch::Tensor grad) | |
{ | |
CHECK_TENSOR(cubemap, 4, 3); | |
CHECK_TENSOR(grad, 4, 3); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
DiffuseCubemapKernelParams p; | |
update_grid(p.gridSize, cubemap); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
// Setup tensors | |
torch::Tensor cubemap_grad; | |
p.cubemap = make_cuda_tensor(cubemap, p.gridSize); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
cubemap_grad = torch::zeros({ p.gridSize.z, p.gridSize.y, p.gridSize.x, cubemap.size(3) }, torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA)); | |
p.cubemap.d_val = (void*)cubemap_grad.data_ptr<float>(); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)DiffuseCubemapBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return cubemap_grad; | |
} | |
torch::Tensor specular_bounds(int resolution, float costheta_cutoff) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
SpecularBoundsKernelParams p; | |
p.costheta_cutoff = costheta_cutoff; | |
p.gridSize = dim3(resolution, resolution, 6); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::zeros({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 6*4 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
// Setup tensors | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)SpecularBoundsKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
torch::Tensor specular_cubemap_fwd(torch::Tensor cubemap, torch::Tensor bounds, float roughness, float costheta_cutoff) | |
{ | |
CHECK_TENSOR(cubemap, 4, 3); | |
CHECK_TENSOR(bounds, 4, 6*4); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
SpecularCubemapKernelParams p; | |
p.roughness = roughness; | |
p.costheta_cutoff = costheta_cutoff; | |
update_grid(p.gridSize, cubemap); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 4 }, opts); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
// Setup tensors | |
p.cubemap = make_cuda_tensor(cubemap, p.gridSize); | |
p.bounds = make_cuda_tensor(bounds, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)SpecularCubemapFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
torch::Tensor specular_cubemap_bwd(torch::Tensor cubemap, torch::Tensor bounds, torch::Tensor grad, float roughness, float costheta_cutoff) | |
{ | |
CHECK_TENSOR(cubemap, 4, 3); | |
CHECK_TENSOR(bounds, 4, 6*4); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
SpecularCubemapKernelParams p; | |
p.roughness = roughness; | |
p.costheta_cutoff = costheta_cutoff; | |
update_grid(p.gridSize, cubemap); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
// Setup tensors | |
torch::Tensor cubemap_grad; | |
p.cubemap = make_cuda_tensor(cubemap, p.gridSize); | |
p.bounds = make_cuda_tensor(bounds, p.gridSize); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
cubemap_grad = torch::zeros({ p.gridSize.z, p.gridSize.y, p.gridSize.x, cubemap.size(3) }, torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA)); | |
p.cubemap.d_val = (void*)cubemap_grad.data_ptr<float>(); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)SpecularCubemapBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return cubemap_grad; | |
} | |
//------------------------------------------------------------------------ | |
// loss function | |
LossType strToLoss(std::string str) | |
{ | |
if (str == "mse") | |
return LOSS_MSE; | |
else if (str == "relmse") | |
return LOSS_RELMSE; | |
else if (str == "smape") | |
return LOSS_SMAPE; | |
else | |
return LOSS_L1; | |
} | |
torch::Tensor image_loss_fwd(torch::Tensor img, torch::Tensor target, std::string loss, std::string tonemapper, bool fp16) | |
{ | |
CHECK_TENSOR(img, 4, 3); | |
CHECK_TENSOR(target, 4, 3); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
LossKernelParams p; | |
p.out.fp16 = fp16; | |
p.loss = strToLoss(loss); | |
p.tonemapper = tonemapper == "log_srgb" ? TONEMAPPER_LOG_SRGB : TONEMAPPER_NONE; | |
update_grid(p.gridSize, img, target); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 warpSize = getWarpSize(blockSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = torch::empty({ (p.gridSize.z - 1)/ warpSize.z + 1, (p.gridSize.y - 1) / warpSize.y + 1, (p.gridSize.x - 1) / warpSize.x + 1, 1 }, opts); | |
p.img = make_cuda_tensor(img, p.gridSize); | |
p.target = make_cuda_tensor(target, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)imgLossFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
std::tuple<torch::Tensor, torch::Tensor> image_loss_bwd(torch::Tensor img, torch::Tensor target, torch::Tensor grad, std::string loss, std::string tonemapper) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
LossKernelParams p; | |
p.loss = strToLoss(loss); | |
p.tonemapper = tonemapper == "log_srgb" ? TONEMAPPER_LOG_SRGB : TONEMAPPER_NONE; | |
update_grid(p.gridSize, img, target); | |
// Choose launch parameters. | |
dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); | |
dim3 warpSize = getWarpSize(blockSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
torch::Tensor img_grad, target_grad; | |
p.img = make_cuda_tensor(img, p.gridSize, &img_grad); | |
p.target = make_cuda_tensor(target, p.gridSize, &target_grad); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)imgLossBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return std::tuple<torch::Tensor, torch::Tensor>(img_grad, target_grad); | |
} | |
//------------------------------------------------------------------------ | |
// transform function | |
torch::Tensor xfm_fwd(torch::Tensor points, torch::Tensor matrix, bool isPoints, bool fp16) | |
{ | |
CHECK_TENSOR(points, 3, 3); | |
CHECK_TENSOR(matrix, 3, 4); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
XfmKernelParams p; | |
p.out.fp16 = fp16; | |
p.isPoints = isPoints; | |
p.gridSize.x = points.size(1); | |
p.gridSize.y = 1; | |
p.gridSize.z = std::max(matrix.size(0), points.size(0)); | |
// Choose launch parameters. | |
dim3 blockSize(BLOCK_X * BLOCK_Y, 1, 1); | |
dim3 warpSize = getWarpSize(blockSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
// Allocate output tensors. | |
torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); | |
torch::Tensor out = isPoints ? torch::empty({ matrix.size(0), points.size(1), 4 }, opts) : torch::empty({ matrix.size(0), points.size(1), 3 }, opts); | |
p.points = make_cuda_tensor(points, p.gridSize); | |
p.matrix = make_cuda_tensor(matrix, p.gridSize); | |
p.out = make_cuda_tensor(out, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)xfmPointsFwdKernel, gridSize, blockSize, args, 0, stream)); | |
return out; | |
} | |
torch::Tensor xfm_bwd(torch::Tensor points, torch::Tensor matrix, torch::Tensor grad, bool isPoints) | |
{ | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
// Extract input parameters. | |
XfmKernelParams p; | |
p.isPoints = isPoints; | |
p.gridSize.x = points.size(1); | |
p.gridSize.y = 1; | |
p.gridSize.z = std::max(matrix.size(0), points.size(0)); | |
// Choose launch parameters. | |
dim3 blockSize(BLOCK_X * BLOCK_Y, 1, 1); | |
dim3 warpSize = getWarpSize(blockSize); | |
dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); | |
torch::Tensor points_grad; | |
p.points = make_cuda_tensor(points, p.gridSize, &points_grad); | |
p.matrix = make_cuda_tensor(matrix, p.gridSize); | |
p.out = make_cuda_tensor(grad, p.gridSize); | |
// Launch CUDA kernel. | |
void* args[] = { &p }; | |
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)xfmPointsBwdKernel, gridSize, blockSize, args, 0, stream)); | |
return points_grad; | |
} | |
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { | |
m.def("prepare_shading_normal_fwd", &prepare_shading_normal_fwd, "prepare_shading_normal_fwd"); | |
m.def("prepare_shading_normal_bwd", &prepare_shading_normal_bwd, "prepare_shading_normal_bwd"); | |
m.def("lambert_fwd", &lambert_fwd, "lambert_fwd"); | |
m.def("lambert_bwd", &lambert_bwd, "lambert_bwd"); | |
m.def("frostbite_fwd", &frostbite_fwd, "frostbite_fwd"); | |
m.def("frostbite_bwd", &frostbite_bwd, "frostbite_bwd"); | |
m.def("fresnel_shlick_fwd", &fresnel_shlick_fwd, "fresnel_shlick_fwd"); | |
m.def("fresnel_shlick_bwd", &fresnel_shlick_bwd, "fresnel_shlick_bwd"); | |
m.def("ndf_ggx_fwd", &ndf_ggx_fwd, "ndf_ggx_fwd"); | |
m.def("ndf_ggx_bwd", &ndf_ggx_bwd, "ndf_ggx_bwd"); | |
m.def("lambda_ggx_fwd", &lambda_ggx_fwd, "lambda_ggx_fwd"); | |
m.def("lambda_ggx_bwd", &lambda_ggx_bwd, "lambda_ggx_bwd"); | |
m.def("masking_smith_fwd", &masking_smith_fwd, "masking_smith_fwd"); | |
m.def("masking_smith_bwd", &masking_smith_bwd, "masking_smith_bwd"); | |
m.def("pbr_specular_fwd", &pbr_specular_fwd, "pbr_specular_fwd"); | |
m.def("pbr_specular_bwd", &pbr_specular_bwd, "pbr_specular_bwd"); | |
m.def("pbr_bsdf_fwd", &pbr_bsdf_fwd, "pbr_bsdf_fwd"); | |
m.def("pbr_bsdf_bwd", &pbr_bsdf_bwd, "pbr_bsdf_bwd"); | |
m.def("diffuse_cubemap_fwd", &diffuse_cubemap_fwd, "diffuse_cubemap_fwd"); | |
m.def("diffuse_cubemap_bwd", &diffuse_cubemap_bwd, "diffuse_cubemap_bwd"); | |
m.def("specular_bounds", &specular_bounds, "specular_bounds"); | |
m.def("specular_cubemap_fwd", &specular_cubemap_fwd, "specular_cubemap_fwd"); | |
m.def("specular_cubemap_bwd", &specular_cubemap_bwd, "specular_cubemap_bwd"); | |
m.def("image_loss_fwd", &image_loss_fwd, "image_loss_fwd"); | |
m.def("image_loss_bwd", &image_loss_bwd, "image_loss_bwd"); | |
m.def("xfm_fwd", &xfm_fwd, "xfm_fwd"); | |
m.def("xfm_bwd", &xfm_bwd, "xfm_bwd"); | |
} |