Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,42 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from peft import PeftModel
|
4 |
import torch
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
-
# Load model once at startup
|
9 |
@app.on_event("startup")
|
10 |
async def load_model():
|
11 |
try:
|
12 |
-
#
|
13 |
-
|
14 |
-
adapter_name = "LAWSA07/medical_fine_tuned_deepseekR1"
|
15 |
-
|
16 |
-
# Load base model with 4-bit quantization
|
17 |
-
app.state.base_model = AutoModelForCausalLM.from_pretrained(
|
18 |
-
model_name,
|
19 |
load_in_4bit=True,
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
device_map="auto",
|
22 |
-
trust_remote_code=True
|
23 |
)
|
24 |
-
|
25 |
# Attach PEFT adapter
|
26 |
app.state.model = PeftModel.from_pretrained(
|
27 |
app.state.base_model,
|
28 |
-
|
29 |
-
adapter_weight_name="adapter_model.safetensors"
|
30 |
)
|
31 |
|
32 |
# Load tokenizer
|
33 |
-
app.state.tokenizer = AutoTokenizer.from_pretrained(
|
34 |
-
|
35 |
-
except Exception as e:
|
36 |
-
raise HTTPException(
|
37 |
-
status_code=500,
|
38 |
-
detail=f"Model loading failed: {str(e)}"
|
39 |
)
|
40 |
|
41 |
-
@app.get("/")
|
42 |
-
def health_check():
|
43 |
-
return {"status": "OK"}
|
44 |
-
|
45 |
-
@app.post("/generate")
|
46 |
-
async def generate_text(prompt: str, max_length: int = 200):
|
47 |
-
try:
|
48 |
-
inputs = app.state.tokenizer(
|
49 |
-
prompt,
|
50 |
-
return_tensors="pt",
|
51 |
-
padding=True
|
52 |
-
).to("cuda")
|
53 |
-
|
54 |
-
outputs = app.state.model.generate(
|
55 |
-
**inputs,
|
56 |
-
max_length=max_length,
|
57 |
-
temperature=0.7,
|
58 |
-
do_sample=True
|
59 |
-
)
|
60 |
-
|
61 |
-
decoded = app.state.tokenizer.decode(
|
62 |
-
outputs[0],
|
63 |
-
skip_special_tokens=True
|
64 |
-
)
|
65 |
-
|
66 |
-
return {"response": decoded}
|
67 |
-
|
68 |
except Exception as e:
|
69 |
raise HTTPException(
|
70 |
status_code=500,
|
71 |
-
detail=f"
|
72 |
)
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
3 |
from peft import PeftModel
|
4 |
import torch
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
|
|
8 |
@app.on_event("startup")
|
9 |
async def load_model():
|
10 |
try:
|
11 |
+
# 4-bit config
|
12 |
+
bnb_config = BitsAndBytesConfig(
|
|
|
|
|
|
|
|
|
|
|
13 |
load_in_4bit=True,
|
14 |
+
bnb_4bit_quant_type="nf4",
|
15 |
+
bnb_4bit_compute_dtype=torch.float16,
|
16 |
+
bnb_4bit_use_double_quant=True,
|
17 |
+
)
|
18 |
+
|
19 |
+
# Load base model
|
20 |
+
app.state.base_model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
"unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit",
|
22 |
+
quantization_config=bnb_config,
|
23 |
device_map="auto",
|
24 |
+
trust_remote_code=True
|
25 |
)
|
26 |
+
|
27 |
# Attach PEFT adapter
|
28 |
app.state.model = PeftModel.from_pretrained(
|
29 |
app.state.base_model,
|
30 |
+
"LAWSA07/medical_fine_tuned_deepseekR1"
|
|
|
31 |
)
|
32 |
|
33 |
# Load tokenizer
|
34 |
+
app.state.tokenizer = AutoTokenizer.from_pretrained(
|
35 |
+
"unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit"
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
except Exception as e:
|
39 |
raise HTTPException(
|
40 |
status_code=500,
|
41 |
+
detail=f"Model loading failed: {str(e)}"
|
42 |
)
|