Spaces:
Configuration error
Configuration error
import cv2 | |
import numpy as np | |
import torch | |
from skimage import transform as skt | |
from typing import Iterable, Tuple | |
src1 = np.array( | |
[ | |
[51.642, 50.115], | |
[57.617, 49.990], | |
[35.740, 69.007], | |
[51.157, 89.050], | |
[57.025, 89.702], | |
], | |
dtype=np.float32, | |
) | |
# <--left | |
src2 = np.array( | |
[ | |
[45.031, 50.118], | |
[65.568, 50.872], | |
[39.677, 68.111], | |
[45.177, 86.190], | |
[64.246, 86.758], | |
], | |
dtype=np.float32, | |
) | |
# ---frontal | |
src3 = np.array( | |
[ | |
[39.730, 51.138], | |
[72.270, 51.138], | |
[56.000, 68.493], | |
[42.463, 87.010], | |
[69.537, 87.010], | |
], | |
dtype=np.float32, | |
) | |
# -->right | |
src4 = np.array( | |
[ | |
[46.845, 50.872], | |
[67.382, 50.118], | |
[72.737, 68.111], | |
[48.167, 86.758], | |
[67.236, 86.190], | |
], | |
dtype=np.float32, | |
) | |
# -->right profile | |
src5 = np.array( | |
[ | |
[54.796, 49.990], | |
[60.771, 50.115], | |
[76.673, 69.007], | |
[55.388, 89.702], | |
[61.257, 89.050], | |
], | |
dtype=np.float32, | |
) | |
src = np.array([src1, src2, src3, src4, src5]) | |
src_map = src | |
ffhq_src = np.array( | |
[ | |
[192.98138, 239.94708], | |
[318.90277, 240.1936], | |
[256.63416, 314.01935], | |
[201.26117, 371.41043], | |
[313.08905, 371.15118], | |
] | |
) | |
ffhq_src = np.expand_dims(ffhq_src, axis=0) | |
# arcface_src = np.array( | |
# [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], | |
# [41.5493, 92.3655], [70.7299, 92.2041]], | |
# dtype=np.float32) | |
# arcface_src = np.expand_dims(arcface_src, axis=0) | |
# In[66]: | |
# lmk is prediction; src is template | |
def estimate_norm(lmk, image_size=112, mode="ffhq"): | |
assert lmk.shape == (5, 2) | |
tform = skt.SimilarityTransform() | |
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1) | |
min_M = [] | |
min_index = [] | |
min_error = float("inf") | |
if mode == "ffhq": | |
# assert image_size == 112 | |
src = ffhq_src * image_size / 512 | |
else: | |
src = src_map * image_size / 112 | |
for i in np.arange(src.shape[0]): | |
tform.estimate(lmk, src[i]) | |
M = tform.params[0:2, :] | |
results = np.dot(M, lmk_tran.T) | |
results = results.T | |
error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1))) | |
if error < min_error: | |
min_error = error | |
min_M = M | |
min_index = i | |
return min_M, min_index | |
def norm_crop(img, landmark, image_size=112, mode="ffhq"): | |
if mode == "Both": | |
M_None, _ = estimate_norm(landmark, image_size, mode="newarc") | |
M_ffhq, _ = estimate_norm(landmark, image_size, mode="ffhq") | |
warped_None = cv2.warpAffine( | |
img, M_None, (image_size, image_size), borderValue=0.0 | |
) | |
warped_ffhq = cv2.warpAffine( | |
img, M_ffhq, (image_size, image_size), borderValue=0.0 | |
) | |
return warped_ffhq, warped_None | |
else: | |
M, pose_index = estimate_norm(landmark, image_size, mode) | |
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) | |
return warped | |
def square_crop(im, S): | |
if im.shape[0] > im.shape[1]: | |
height = S | |
width = int(float(im.shape[1]) / im.shape[0] * S) | |
scale = float(S) / im.shape[0] | |
else: | |
width = S | |
height = int(float(im.shape[0]) / im.shape[1] * S) | |
scale = float(S) / im.shape[1] | |
resized_im = cv2.resize(im, (width, height)) | |
det_im = np.zeros((S, S, 3), dtype=np.uint8) | |
det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im | |
return det_im, scale | |
def transform(data, center, output_size, scale, rotation): | |
scale_ratio = scale | |
rot = float(rotation) * np.pi / 180.0 | |
# translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) | |
t1 = skt.SimilarityTransform(scale=scale_ratio) | |
cx = center[0] * scale_ratio | |
cy = center[1] * scale_ratio | |
t2 = skt.SimilarityTransform(translation=(-1 * cx, -1 * cy)) | |
t3 = skt.SimilarityTransform(rotation=rot) | |
t4 = skt.SimilarityTransform(translation=(output_size / 2, output_size / 2)) | |
t = t1 + t2 + t3 + t4 | |
M = t.params[0:2] | |
cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) | |
return cropped, M | |
def trans_points2d(pts, M): | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
# print('new_pt', new_pt.shape, new_pt) | |
new_pts[i] = new_pt[0:2] | |
return new_pts | |
def trans_points3d(pts, M): | |
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) | |
# print(scale) | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
# print('new_pt', new_pt.shape, new_pt) | |
new_pts[i][0:2] = new_pt[0:2] | |
new_pts[i][2] = pts[i][2] * scale | |
return new_pts | |
def trans_points(pts, M): | |
if pts.shape[1] == 2: | |
return trans_points2d(pts, M) | |
else: | |
return trans_points3d(pts, M) | |
def inverse_transform(mat: np.ndarray) -> np.ndarray: | |
# inverse the Affine transformation matrix | |
inv_mat = np.zeros([2, 3]) | |
div1 = mat[0][0] * mat[1][1] - mat[0][1] * mat[1][0] | |
inv_mat[0][0] = mat[1][1] / div1 | |
inv_mat[0][1] = -mat[0][1] / div1 | |
inv_mat[0][2] = -(mat[0][2] * mat[1][1] - mat[0][1] * mat[1][2]) / div1 | |
div2 = mat[0][1] * mat[1][0] - mat[0][0] * mat[1][1] | |
inv_mat[1][0] = mat[1][0] / div2 | |
inv_mat[1][1] = -mat[0][0] / div2 | |
inv_mat[1][2] = -(mat[0][2] * mat[1][0] - mat[0][0] * mat[1][2]) / div2 | |
return inv_mat | |
def inverse_transform_batch(mat: torch.Tensor) -> torch.Tensor: | |
# inverse the Affine transformation matrix | |
inv_mat = torch.zeros_like(mat) | |
div1 = mat[:, 0, 0] * mat[:, 1, 1] - mat[:, 0, 1] * mat[:, 1, 0] | |
inv_mat[:, 0, 0] = mat[:, 1, 1] / div1 | |
inv_mat[:, 0, 1] = -mat[:, 0, 1] / div1 | |
inv_mat[:, 0, 2] = ( | |
-(mat[:, 0, 2] * mat[:, 1, 1] - mat[:, 0, 1] * mat[:, 1, 2]) / div1 | |
) | |
div2 = mat[:, 0, 1] * mat[:, 1, 0] - mat[:, 0, 0] * mat[:, 1, 1] | |
inv_mat[:, 1, 0] = mat[:, 1, 0] / div2 | |
inv_mat[:, 1, 1] = -mat[:, 0, 0] / div2 | |
inv_mat[:, 1, 2] = ( | |
-(mat[:, 0, 2] * mat[:, 1, 0] - mat[:, 0, 0] * mat[:, 1, 2]) / div2 | |
) | |
return inv_mat | |
def align_face( | |
img: np.ndarray, key_points: np.ndarray, crop_size: int, mode: str = "ffhq" | |
) -> Tuple[Iterable[np.ndarray], Iterable[np.ndarray]]: | |
align_imgs = [] | |
transforms = [] | |
for i in range(key_points.shape[0]): | |
kps = key_points[i] | |
transform_matrix, _ = estimate_norm(kps, crop_size, mode=mode) | |
align_img = cv2.warpAffine( | |
img, transform_matrix, (crop_size, crop_size), borderValue=0.0 | |
) | |
align_imgs.append(align_img) | |
transforms.append(transform_matrix) | |
return align_imgs, transforms | |