Spaces:
Configuration error
Configuration error
""" | |
Copyright (C) 2019 NVIDIA Corporation. All rights reserved. | |
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). | |
""" | |
import torch | |
import torch.nn as nn | |
from torchvision import transforms | |
from typing import Iterable | |
import numpy as np | |
class InstanceNorm(nn.Module): | |
def __init__(self, epsilon=1e-8): | |
""" | |
@notice: avoid in-place ops. | |
https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3 | |
""" | |
super(InstanceNorm, self).__init__() | |
self.epsilon = epsilon | |
def forward(self, x): | |
x = x - torch.mean(x, (2, 3), True) | |
tmp = torch.mul(x, x) # or x ** 2 | |
tmp = torch.rsqrt(torch.mean(tmp, (2, 3), True) + self.epsilon) | |
return x * tmp | |
class ApplyStyle(nn.Module): | |
""" | |
@ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb | |
""" | |
def __init__(self, latent_size, channels): | |
super(ApplyStyle, self).__init__() | |
self.linear = nn.Linear(latent_size, channels * 2) | |
def forward(self, x, latent): | |
style = self.linear(latent) # style => [batch_size, n_channels*2] | |
shape = [-1, 2, x.size(1), 1, 1] | |
style = style.view(shape) # [batch_size, 2, n_channels, ...] | |
# x = x * (style[:, 0] + 1.) + style[:, 1] | |
x = x * (style[:, 0] * 1 + 1.0) + style[:, 1] * 1 | |
return x | |
class ResnetBlock_Adain(nn.Module): | |
def __init__(self, dim, latent_size, padding_type, activation=nn.ReLU(True)): | |
super(ResnetBlock_Adain, self).__init__() | |
p = 0 | |
conv1 = [] | |
if padding_type == "reflect": | |
conv1 += [nn.ReflectionPad2d(1)] | |
elif padding_type == "replicate": | |
conv1 += [nn.ReplicationPad2d(1)] | |
elif padding_type == "zero": | |
p = 1 | |
else: | |
raise NotImplementedError("padding [%s] is not implemented" % padding_type) | |
conv1 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()] | |
self.conv1 = nn.Sequential(*conv1) | |
self.style1 = ApplyStyle(latent_size, dim) | |
self.act1 = activation | |
p = 0 | |
conv2 = [] | |
if padding_type == "reflect": | |
conv2 += [nn.ReflectionPad2d(1)] | |
elif padding_type == "replicate": | |
conv2 += [nn.ReplicationPad2d(1)] | |
elif padding_type == "zero": | |
p = 1 | |
else: | |
raise NotImplementedError("padding [%s] is not implemented" % padding_type) | |
conv2 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()] | |
self.conv2 = nn.Sequential(*conv2) | |
self.style2 = ApplyStyle(latent_size, dim) | |
def forward(self, x, dlatents_in_slice): | |
y = self.conv1(x) | |
y = self.style1(y, dlatents_in_slice) | |
y = self.act1(y) | |
y = self.conv2(y) | |
y = self.style2(y, dlatents_in_slice) | |
out = x + y | |
return out | |
class Generator_Adain_Upsample(nn.Module): | |
def __init__( | |
self, | |
input_nc: int, | |
output_nc: int, | |
latent_size: int, | |
n_blocks: int = 6, | |
deep: bool = False, | |
use_last_act: bool = True, | |
norm_layer: torch.nn.Module = nn.BatchNorm2d, | |
padding_type: str = "reflect", | |
): | |
assert n_blocks >= 0 | |
super(Generator_Adain_Upsample, self).__init__() | |
activation = nn.ReLU(True) | |
self.deep = deep | |
self.use_last_act = use_last_act | |
self.to_tensor_normalize = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
self.to_tensor = transforms.Compose([transforms.ToTensor()]) | |
self.imagenet_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1) | |
self.imagenet_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1) | |
self.first_layer = nn.Sequential( | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, 64, kernel_size=7, padding=0), | |
norm_layer(64), | |
activation, | |
) | |
# downsample | |
self.down1 = nn.Sequential( | |
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), | |
norm_layer(128), | |
activation, | |
) | |
self.down2 = nn.Sequential( | |
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1), | |
norm_layer(256), | |
activation, | |
) | |
self.down3 = nn.Sequential( | |
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1), | |
norm_layer(512), | |
activation, | |
) | |
if self.deep: | |
self.down4 = nn.Sequential( | |
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1), | |
norm_layer(512), | |
activation, | |
) | |
# resnet blocks | |
BN = [] | |
for i in range(n_blocks): | |
BN += [ | |
ResnetBlock_Adain( | |
512, | |
latent_size=latent_size, | |
padding_type=padding_type, | |
activation=activation, | |
) | |
] | |
self.BottleNeck = nn.Sequential(*BN) | |
if self.deep: | |
self.up4 = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False), | |
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(512), | |
activation, | |
) | |
self.up3 = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False), | |
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(256), | |
activation, | |
) | |
self.up2 = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False), | |
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(128), | |
activation, | |
) | |
self.up1 = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False), | |
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(64), | |
activation, | |
) | |
if self.use_last_act: | |
self.last_layer = nn.Sequential( | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(64, output_nc, kernel_size=7, padding=0), | |
torch.nn.Tanh(), | |
) | |
else: | |
self.last_layer = nn.Sequential( | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(64, output_nc, kernel_size=7, padding=0), | |
) | |
def to(self, device): | |
super().to(device) | |
self.device = device | |
self.imagenet_mean = self.imagenet_mean.to(device) | |
self.imagenet_std = self.imagenet_std.to(device) | |
return self | |
def forward(self, x: Iterable[np.ndarray], dlatents: torch.Tensor): | |
if self.use_last_act: | |
x = [self.to_tensor(_) for _ in x] | |
else: | |
x = [self.to_tensor_normalize(_) for _ in x] | |
x = torch.stack(x, dim=0) | |
x = x.to(self.device) | |
skip1 = self.first_layer(x) | |
skip2 = self.down1(skip1) | |
skip3 = self.down2(skip2) | |
if self.deep: | |
skip4 = self.down3(skip3) | |
x = self.down4(skip4) | |
else: | |
x = self.down3(skip3) | |
for i in range(len(self.BottleNeck)): | |
x = self.BottleNeck[i](x, dlatents) | |
if self.deep: | |
x = self.up4(x) | |
x = self.up3(x) | |
x = self.up2(x) | |
x = self.up1(x) | |
x = self.last_layer(x) | |
if self.use_last_act: | |
x = (x + 1) / 2 | |
else: | |
x = x * self.imagenet_std + self.imagenet_mean | |
return x | |