Spaces:
Runtime error
Runtime error
File size: 2,318 Bytes
79056ef e77ba73 cfd0489 e7e7d8c e77ba73 79056ef 83af7df e77ba73 9bf7951 e77ba73 83af7df 0b16bd7 83af7df 0b16bd7 83af7df c3b866d e77ba73 356e2ea 21bd444 0e3070e e77ba73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
from supervision import Detections
import cv2
import gradio as gr
from PIL import Image
import numpy as np
model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
model = YOLO(model_path)
def detect_faces(image):
print(type(image))
output = model(image)
results = Detections.from_ultralytics(output[0])
im = np.array(image)
for i in results:
im = cv2.rectangle(im, (int(i[0][0]),int(i[0][1])), (int(i[0][2]),int(i[0][3])), (255,0,0), 2)
image_np = np.array(image)
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
face_cascade_face_1 = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
face_cascade_face_2 = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_alt.xml")
face_cascade_face_3 = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_alt2.xml")
faces1 = face_cascade_face_1.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5))
faces2 = face_cascade_face_2.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5))
faces3 = face_cascade_face_3.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5))
if len(faces1) <= len(faces2):
if len(faces2) < len(faces3):
faces = faces3
else:
faces = faces2
else:
faces = faces1
print(len(faces1),len(faces2),len(faces3))
face_cascade_eye = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_eye.xml")
eyes = face_cascade_eye.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5))
for (x, y, w, h) in faces:
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
for (x, y, w, h) in eyes:
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 0, 255), 2)
return (image_np,im)
interface = gr.Interface(
fn=detect_faces,
inputs=gr.Image(label='Upload Image'),
outputs=[gr.Image(label='Original'),gr.Image(label='Deep learning')],
title="Face Detection Deep Learning",
description="Upload an image, and the model will detect faces and draw bounding boxes around them.",
)
interface.launch() |