Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
import os
|
5 |
-
|
6 |
-
# import spaces #[uncomment to use ZeroGPU]
|
7 |
-
from diffusers import DiffusionPipeline
|
8 |
-
from diffusers import StableDiffusionPipeline
|
9 |
-
from diffusers import OnnxRuntimeModel
|
10 |
import torch
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
-
model_repo_id = "stabilityai/sdxl-turbo" #
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
if torch.cuda.is_available():
|
21 |
-
torch_dtype = torch.float16
|
22 |
-
else:
|
23 |
-
torch_dtype = torch.float32
|
24 |
|
25 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
26 |
pipe = pipe.to(device)
|
27 |
|
|
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
MAX_IMAGE_SIZE = 752
|
30 |
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
dataset = load_dataset("LEIDIA/Data_Womleimg") # Exemplo do seu dataset no Hugging Face
|
35 |
-
|
36 |
-
# Adicionar descrições ao dataset
|
37 |
descriptions = [
|
38 |
"A woman wearing a full blue leather catsuit",
|
39 |
"A woman in a black leather pants",
|
@@ -41,23 +29,11 @@ descriptions = [
|
|
41 |
"A woman in long red leather jacket, red leather shorts and a tigh high red leather boots",
|
42 |
"A legs woman in cream color leather pants",
|
43 |
"A woman in purple leather leggings with tigh high black leather boots",
|
44 |
-
|
45 |
-
"A blonde long hair curly woman using a yellow mini tight leather skirt",
|
46 |
-
"A thin asian woman using a thigh long black leather dress",
|
47 |
-
"A simple high brown leather boots",
|
48 |
-
"A beautiful face brunette woman using a leather clothes",
|
49 |
-
"A beautiful brunette woman wearing a sleeveless black dress, seated at a bar, She is holding a glass champagne, The background is softly lit, with warm lighting and blurred bottles on shelves, creating a cozy and elegant atmosphere.",
|
50 |
-
"A curly blonde woman is wearing a bold and stylish outfit red leather jacket paired with black leather tight pants and red high-heeled leather boots, The outfit has a modern and edgy vibe, with a focus on vibrant colors and sleek materials.",
|
51 |
-
"Ebony woman standing outdoors against a backdrop of rolling hills and a cloudy sky, wearing a striking outfit consisting of a red leather shirt, a black leather mini corset, and a red plaid skirt with a long panel on one side,also wearing knee-high red lace-up leather boots, Their hair is voluminous and styled in natural curls, The setting appears to be a grassy landscape.",
|
52 |
-
"Blonde curly woman is wearing a fitted, shiny blue outfit made of what appears to be leather or vinyl clothes, The ensemble includes a jacket and pants with metallic buttons and a belt at the waist, They are also wearing knee-high boots with lacing details, Their hair is styled in voluminous, curly blonde locks. The setting is a simple, neutral-colored room with a concrete or stone-like wall and floor.",
|
53 |
-
"The girl is wearing a black leather outfit include top,legging and sleeves,consisting of a fitted top with a heart-shaped cutout and high-waisted pants, The ensemble includes a purple cape and the individual has long purple hair,The style is reminiscent of superhero or fantasy attire, emphasizing a bold and sleek look.",
|
54 |
-
"The girl dressed in a sleek, black leather outfit. The attire includes a cropped top with a zip closure and a high-waisted bottom, both designed to accentuate the figure's silhouette, The individual has long, pink hair styled in a ponytail, and is wearing long black gloves that reach the upper arms. The background appears to be softly lit, enhancing the glossy texture of the leather,The overall look is bold and fashion-forward, with a striking color contrast between the black and pink elements.",
|
55 |
-
"a girl wearing a form-fitting black leather top that highlights their physique, The top has a high neckline and is sleeveless, emphasizing the shoulders and arms, The individual has long, pink hair cascading down, adding a striking contrast to the outfit. The background is a light, neutral color, which helps to accentuate the subject, The overall aesthetic is bold and fashion-forward."
|
56 |
-
# Adicione uma descrição para cada imagem no dataset
|
57 |
]
|
58 |
|
59 |
-
|
60 |
def infer(prompt, num_inference_steps):
|
|
|
61 |
image = pipe(
|
62 |
prompt=prompt,
|
63 |
num_inference_steps=num_inference_steps,
|
@@ -66,9 +42,9 @@ def infer(prompt, num_inference_steps):
|
|
66 |
).images[0]
|
67 |
return image
|
68 |
|
|
|
69 |
|
70 |
-
|
71 |
-
def infer(
|
72 |
prompt,
|
73 |
negative_prompt,
|
74 |
seed,
|
@@ -77,7 +53,6 @@ def infer(
|
|
77 |
height,
|
78 |
guidance_scale,
|
79 |
num_inference_steps,
|
80 |
-
progress=gr.Progress(track_tqdm=True),
|
81 |
):
|
82 |
if randomize_seed:
|
83 |
seed = random.randint(0, MAX_SEED)
|
@@ -96,18 +71,6 @@ def infer(
|
|
96 |
|
97 |
return image, seed
|
98 |
|
99 |
-
|
100 |
-
examples = [
|
101 |
-
" A Woman using Leather Pants "
|
102 |
-
]
|
103 |
-
|
104 |
-
css = """
|
105 |
-
#col-container {
|
106 |
-
margin: 0 auto;
|
107 |
-
max-width: 640px;
|
108 |
-
}
|
109 |
-
"""
|
110 |
-
|
111 |
# Interface Gradio
|
112 |
with gr.Blocks() as demo:
|
113 |
with gr.Column(elem_id="col-container"):
|
@@ -122,90 +85,76 @@ with gr.Blocks() as demo:
|
|
122 |
container=False,
|
123 |
)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
generate_button.click(infer, inputs=[prompt, num_inference_steps], outputs=result)
|
134 |
-
|
135 |
-
demo.launch()
|
136 |
|
137 |
-
|
|
|
|
|
138 |
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
140 |
|
|
|
141 |
with gr.Accordion("Advanced Settings", open=False):
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
)
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
|
157 |
-
|
158 |
|
159 |
-
|
160 |
-
|
161 |
label="Width",
|
162 |
-
minimum=
|
163 |
maximum=MAX_IMAGE_SIZE,
|
164 |
step=8,
|
165 |
-
|
166 |
-
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
)
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
value=15, # Valor padrão ajustado
|
191 |
-
)
|
192 |
-
|
193 |
-
|
194 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
195 |
-
gr.on(
|
196 |
-
triggers=[run_button.click, prompt.submit],
|
197 |
-
fn=infer,
|
198 |
-
inputs=[
|
199 |
-
prompt,
|
200 |
-
negative_prompt,
|
201 |
-
seed,
|
202 |
-
randomize_seed,
|
203 |
-
width,
|
204 |
-
height,
|
205 |
-
guidance_scale,
|
206 |
-
num_inference_steps,
|
207 |
],
|
208 |
-
|
209 |
)
|
210 |
|
211 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
from datasets import load_dataset
|
7 |
|
8 |
+
# Configurações do dispositivo e modelo
|
|
|
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model_repo_id = "stabilityai/sdxl-turbo" # Substitua pelo modelo desejado
|
|
|
11 |
|
12 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
|
|
|
|
|
13 |
|
14 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
15 |
pipe = pipe.to(device)
|
16 |
|
17 |
+
# Definições de parâmetros gerais
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 752
|
20 |
|
21 |
+
# Carregando o dataset do Hugging Face
|
22 |
+
dataset = load_dataset("LEIDIA/Data_Womleimg")
|
23 |
|
24 |
+
# Adicionando descrições ao dataset
|
|
|
|
|
|
|
|
|
25 |
descriptions = [
|
26 |
"A woman wearing a full blue leather catsuit",
|
27 |
"A woman in a black leather pants",
|
|
|
29 |
"A woman in long red leather jacket, red leather shorts and a tigh high red leather boots",
|
30 |
"A legs woman in cream color leather pants",
|
31 |
"A woman in purple leather leggings with tigh high black leather boots",
|
32 |
+
# Adicione mais descrições conforme necessário
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
]
|
34 |
|
|
|
35 |
def infer(prompt, num_inference_steps):
|
36 |
+
"""Função para gerar a imagem baseada no prompt."""
|
37 |
image = pipe(
|
38 |
prompt=prompt,
|
39 |
num_inference_steps=num_inference_steps,
|
|
|
42 |
).images[0]
|
43 |
return image
|
44 |
|
45 |
+
# Função completa para inferência com mais parâmetros
|
46 |
|
47 |
+
def advanced_infer(
|
|
|
48 |
prompt,
|
49 |
negative_prompt,
|
50 |
seed,
|
|
|
53 |
height,
|
54 |
guidance_scale,
|
55 |
num_inference_steps,
|
|
|
56 |
):
|
57 |
if randomize_seed:
|
58 |
seed = random.randint(0, MAX_SEED)
|
|
|
71 |
|
72 |
return image, seed
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
# Interface Gradio
|
75 |
with gr.Blocks() as demo:
|
76 |
with gr.Column(elem_id="col-container"):
|
|
|
85 |
container=False,
|
86 |
)
|
87 |
|
88 |
+
# Slider para definir o número de passos de inferência
|
89 |
+
num_inference_steps = gr.Slider(
|
90 |
+
label="Number of inference steps",
|
91 |
+
minimum=1,
|
92 |
+
maximum=50,
|
93 |
+
step=1,
|
94 |
+
value=15,
|
95 |
+
)
|
|
|
|
|
|
|
96 |
|
97 |
+
# Botão para gerar a imagem
|
98 |
+
generate_button = gr.Button("Generate")
|
99 |
+
result = gr.Image(label="Generated Image")
|
100 |
|
101 |
+
# Clique no botão para gerar a imagem
|
102 |
+
generate_button.click(
|
103 |
+
infer,
|
104 |
+
inputs=[prompt, num_inference_steps],
|
105 |
+
outputs=result,
|
106 |
+
)
|
107 |
|
108 |
+
# Configurações avançadas
|
109 |
with gr.Accordion("Advanced Settings", open=False):
|
110 |
+
negative_prompt = gr.Textbox(
|
111 |
+
label="Negative prompt",
|
112 |
+
max_lines=1,
|
113 |
+
placeholder="Enter a negative prompt",
|
114 |
+
)
|
|
|
115 |
|
116 |
+
seed = gr.Slider(
|
117 |
+
label="Seed",
|
118 |
+
minimum=0,
|
119 |
+
maximum=MAX_SEED,
|
120 |
+
step=1,
|
121 |
+
value=0,
|
122 |
+
)
|
123 |
|
124 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
125 |
|
126 |
+
with gr.Row():
|
127 |
+
width = gr.Slider(
|
128 |
label="Width",
|
129 |
+
minimum=64,
|
130 |
maximum=MAX_IMAGE_SIZE,
|
131 |
step=8,
|
132 |
+
value=512,
|
133 |
+
)
|
134 |
|
135 |
+
height = gr.Slider(
|
136 |
+
label="Height",
|
137 |
+
minimum=64,
|
138 |
+
maximum=MAX_IMAGE_SIZE,
|
139 |
+
step=8,
|
140 |
+
value=512,
|
141 |
+
)
|
142 |
|
143 |
+
guidance_scale = gr.Slider(
|
144 |
+
label="Guidance scale",
|
145 |
+
minimum=0.0,
|
146 |
+
maximum=20.0,
|
147 |
+
step=0.5,
|
148 |
+
value=7.5,
|
149 |
+
)
|
|
|
150 |
|
151 |
+
# Exemplos de prompts
|
152 |
+
gr.Examples(
|
153 |
+
examples=[
|
154 |
+
"A woman wearing leather pants",
|
155 |
+
"A woman in a red leather jacket",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
],
|
157 |
+
inputs=[prompt],
|
158 |
)
|
159 |
|
160 |
if __name__ == "__main__":
|