LEIDIA commited on
Commit
acf2c5a
·
verified ·
1 Parent(s): df204d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -14
app.py CHANGED
@@ -10,16 +10,14 @@ device = "cpu"
10
  model_repo_id = "stabilityai/sdxl-turbo" # Continuando com o modelo especificado
11
 
12
  # Carregar o pipeline configurado para CPU
13
- pipe = DiffusionPipeline.from_pretrained(model_repo_id,revision="fp16",)
14
  pipe = pipe.to(device)
15
 
16
- # Atualize as configurações do pipeline diretamente
17
- pipe.unet.config.sample_size = (808, 512) # Ajuste de altura e largura divisíveis por 8
18
-
19
  # Carregando o dataset do Hugging Face
20
  dataset = load_dataset("LEIDIA/Data_Womleimg")
21
 
22
 
 
23
  # Parâmetros para carregar o dataset personalizado
24
  dataset_descriptions = [
25
  "Images/Image01.jpg,A blonde woman wearing a blue leather jumpsuit with leather gloves the same color. She is standing with one hand on her face and the other on her waist, in a confident pose. The background is dark and neutral, highlighting the woman figure.",
@@ -57,6 +55,8 @@ dataset_descriptions = [
57
  "Images/Image33.jpg,a woman on an urban street. She is wearing a red leather coat open, revealing a top that exposes her abdomen, and a short dark red leather shorts. Her hair is long and loose, and she is wearing red lipstick. The background shows a busy street with blurred shops and people."
58
  ]
59
 
 
 
60
  # Definir parâmetros padrão para geração rápida
61
  DEFAULT_PROMPT = "A beautiful brunette woman wearing a blue leather pants "
62
  DEFAULT_INFERENCE_STEPS = 6
@@ -70,13 +70,6 @@ def resize_to_divisible_by_8(image):
70
  new_height = height + (8 - height % 8) if height % 8 != 0 else height
71
  return image.resize((new_width, new_height))
72
 
73
- def infer_simple(prompt):
74
- # Garantir que as dimensões sejam divisíveis por 8 antes de gerar
75
- adjusted_height = IMAGE_HEIGHT - (IMAGE_HEIGHT % 8)
76
- adjusted_width = IMAGE_WIDTH - (IMAGE_WIDTH % 8)
77
-
78
- print(f"Using height: {IMAGE_HEIGHT} and width: {IMAGE_WIDTH}")
79
-
80
  # Função simples para gerar imagem
81
  def infer_simple(prompt):
82
  # Geração da imagem
@@ -111,8 +104,5 @@ with gr.Blocks() as demo:
111
  outputs=result,
112
  )
113
 
114
- result = gr.Image(label="Generated Image", shape=(808, 512))
115
-
116
-
117
  if __name__ == "__main__":
118
  demo.launch()
 
10
  model_repo_id = "stabilityai/sdxl-turbo" # Continuando com o modelo especificado
11
 
12
  # Carregar o pipeline configurado para CPU
13
+ pipe = DiffusionPipeline.from_pretrained(model_repo_id)
14
  pipe = pipe.to(device)
15
 
 
 
 
16
  # Carregando o dataset do Hugging Face
17
  dataset = load_dataset("LEIDIA/Data_Womleimg")
18
 
19
 
20
+
21
  # Parâmetros para carregar o dataset personalizado
22
  dataset_descriptions = [
23
  "Images/Image01.jpg,A blonde woman wearing a blue leather jumpsuit with leather gloves the same color. She is standing with one hand on her face and the other on her waist, in a confident pose. The background is dark and neutral, highlighting the woman figure.",
 
55
  "Images/Image33.jpg,a woman on an urban street. She is wearing a red leather coat open, revealing a top that exposes her abdomen, and a short dark red leather shorts. Her hair is long and loose, and she is wearing red lipstick. The background shows a busy street with blurred shops and people."
56
  ]
57
 
58
+
59
+
60
  # Definir parâmetros padrão para geração rápida
61
  DEFAULT_PROMPT = "A beautiful brunette woman wearing a blue leather pants "
62
  DEFAULT_INFERENCE_STEPS = 6
 
70
  new_height = height + (8 - height % 8) if height % 8 != 0 else height
71
  return image.resize((new_width, new_height))
72
 
 
 
 
 
 
 
 
73
  # Função simples para gerar imagem
74
  def infer_simple(prompt):
75
  # Geração da imagem
 
104
  outputs=result,
105
  )
106
 
 
 
 
107
  if __name__ == "__main__":
108
  demo.launch()