File size: 13,039 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from typing import Any, Dict
from schema import Schema, Or
import schema
from data import Scenario, MergedDataset
from methods.base.alg import BaseAlg
from data import build_dataloader
from ..model import ElasticDNN_OfflineFMModel, ElasticDNN_OfflineMDModel
from ...model.base import ElasticDNNUtil
import torch.optim
import tqdm
import torch.nn.functional as F
from torch import nn
from utils.dl.common.env import create_tbwriter
import os
import random
import numpy as np
from copy import deepcopy
from utils.dl.common.model import LayerActivation, get_module
from utils.common.log import logger


class ElasticDNN_MDPretrainingAlg(BaseAlg):
    """
    TODO: fine-tuned FM -> init MD -> trained MD -> construct indexes (only between similar weights) and fine-tune
    """
    def get_required_models_schema(self) -> Schema:
        return Schema({
            'fm': ElasticDNN_OfflineFMModel,
            'md': ElasticDNN_OfflineMDModel
        })
        
    def get_required_hyp_schema(self) -> Schema:
        return Schema({
            'launch_tbboard': bool,
            
            'samples_size': (int, int, int, int),
            'generate_md_width_ratio': int,
            
            'FBS_r': int,
            'FBS_ignore_layers': [str],
            
            'train_batch_size': int,
            'val_batch_size': int,
            'num_workers': int,            
            'optimizer': str,
            'md_optimizer_args': dict,
            'indexes_optimizer_args': dict,
            'scheduler': str,
            'scheduler_args': dict,
            'num_iters': int,
            'val_freq': int,
            'max_sparsity': float,
            'min_sparsity': float,
            'distill_loss_weight': float,
            'index_loss_weight': float,
            'val_num_sparsities': int,
            
            'bn_cal_num_iters': int,
            
            'index_guided_linear_comb_split_size': Or(int, None)
        })
        
    def upsample_2d_tensor(self, p: torch.Tensor, target_len: int):
        assert p.dim() == 2 # regard 2d weight as (batch_size, 1d_vector_dim)
        return F.upsample(p.unsqueeze(1).unsqueeze(3),
                          size=(target_len, 1),
                          mode='bilinear').squeeze(3).squeeze(1)
        
    def two_params_diff_fast(self, trained_p: torch.Tensor, ref_p: torch.Tensor, 
                             index: torch.Tensor, 
                             split_size: int):

        assert trained_p.dim() == ref_p.dim()
        assert index.size(0) == trained_p.size(0) and index.size(1) == ref_p.size(0)
        
        # print(trained_p.size(), ref_p.size(), index.size())

        ref_p = ref_p.detach()
        if trained_p.dim() > 1:
            trained_p = trained_p.flatten(1)
            ref_p = ref_p.flatten(1)
            
            # the weight size of master DNN and foundation model may be totally different
            
            # MD -> FM: upsample first
            # FM -> MD: downsample first
            if trained_p.size(1) < ref_p.size(1):
                trained_p = self.upsample_2d_tensor(trained_p, ref_p.size(1))
            
            index = index.unsqueeze(-1)
        #     linear_combed_ref_p = (ref_p.unsqueeze(0) * index).sum(1)
        # else:
        
        # print(trained_p.size(), ref_p.size(), index.size())
        
        if split_size is None:
            # old version: huge memory consumption, not recommended (although this is fastest)
            # print('old version')
            linear_combed_ref_p = (ref_p.unsqueeze(0) * index).sum(1)
        
        else:
            # new version
            linear_combed_ref_p = 0
            
            cur_split_size = split_size
            while index.size(1) % cur_split_size != 0:
                cur_split_size -= 1
            # print(cur_split_size) 
            
            for i in range(0, index.size(1), cur_split_size):
                # if not isinstance(linear_combed_ref_p, int):
                    # print(linear_combed_ref_p.size(), ref_p.unsqueeze(0)[:, i: i + cur_split_size].size(), index[:, i: i + cur_split_size].size())
                linear_combed_ref_p += ref_p.unsqueeze(0)[:, i: i + cur_split_size] * index[:, i: i + cur_split_size]
            linear_combed_ref_p = linear_combed_ref_p.sum(1)
            
        diff = (linear_combed_ref_p - trained_p).norm(2) ** 2
        return diff
        
    def get_index_loss(self, fm, md, indexes, match_fn, split_size):
        res = 0.

        for name, p in md.named_parameters():
            if p.dim() == 0:
                continue
            
            raw_p = match_fn(name, fm)
            if raw_p is None:
                continue

            index = indexes[name]
            
            # print(name)
            res += self.two_params_diff_fast(p, raw_p, index, split_size)
        return res
    
    def bn_cal(self, model: nn.Module, train_loader, num_iters, device):
        has_bn = False
        for n, m in model.named_modules():
            if isinstance(m, nn.BatchNorm2d):
                has_bn = True
                break
        
        if not has_bn:
            return {}
        
        def bn_calibration_init(m):
            """ calculating post-statistics of batch normalization """
            if getattr(m, 'track_running_stats', False):
                # reset all values for post-statistics
                m.reset_running_stats()
                # set bn in training mode to update post-statistics
                m.training = True
                
        with torch.no_grad():
            model.eval()
            model.apply(bn_calibration_init)
            for _ in range(num_iters):
                x, _ = next(train_loader)
                model(x.to(device))
            model.eval()
            
        bn_stats = {}
        for n, m in model.named_modules():
            if isinstance(m, nn.BatchNorm2d):
                bn_stats[n] = m
        return bn_stats
        
    def run(self, scenario: Scenario, hyps: Dict) -> Dict[str, Any]:
        super().run(scenario, hyps)
        
        # sanity check
        # a=  torch.tensor([[1, 2, 3], [1, 2, 4]])
        # index = torch.tensor([[1, 2, 3],
        # [1, 2, 4]])
        # b = torch.tensor([[1, 2, 3], [1, 2, 4], [2, 3, 4]])
        # print(self.two_params_diff_fast(a, b, index, hyps['index_guided_linear_comb_split_size']))
        
        assert isinstance(self.models['md'], ElasticDNN_OfflineMDModel) # for auto completion
        assert isinstance(self.models['fm'], ElasticDNN_OfflineFMModel) # for auto completion
        
        # 1. add FBS
        device = self.models['md'].device
        
        if self.models['md'].models_dict['main'] == -1:
            logger.info(f'init master DNN by reducing width of an adapted foundation model (already tuned by LoRA)...')
            
            before_fm_model = deepcopy(self.models['fm'].models_dict['main'])
            lora_util = self.models['fm'].get_lora_util()
            lora_absorbed_fm_model = lora_util.absorb_lora_and_recover_net_structure(self.models['fm'].models_dict['main'], 
                                                                                    torch.rand(hyps['samples_size']).to(device))
            self.models['fm'].models_dict['main'] = lora_absorbed_fm_model
            master_dnn = self.models['fm'].generate_md_by_reducing_width(hyps['generate_md_width_ratio'], 
                                                                        torch.rand(hyps['samples_size']).to(device))
            self.models['fm'].models_dict['main'] = before_fm_model
            
            elastic_dnn_util = self.models['fm'].get_elastic_dnn_util()
            master_dnn = elastic_dnn_util.convert_raw_dnn_to_master_dnn_with_perf_test(master_dnn,
                                                                                    hyps['FBS_r'], hyps['FBS_ignore_layers'])
            self.models['md'].models_dict['main'] = master_dnn
            self.models['md'].to(device)
        
        # 2. train (knowledge distillation, index relationship)
        offline_datasets = scenario.get_offline_datasets()
        train_dataset = MergedDataset([d['train'] for d in offline_datasets.values()])
        val_dataset = MergedDataset([d['val'] for d in offline_datasets.values()])
        train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'],
                                        True, None))
        val_loader = build_dataloader(val_dataset, hyps['val_batch_size'], hyps['num_workers'],
                                      False, False)
        
        # 2.1 train whole master DNN (knowledge distillation)
        for p in master_dnn.parameters():
            p.requires_grad = True
        self.models['md'].to_train_mode()
        
        optimizer = torch.optim.__dict__[hyps['optimizer']]([
            {'params': self.models['md'].models_dict['main'].parameters(), **hyps['md_optimizer_args']}
        ])
        scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args'])
        tb_writer = create_tbwriter(os.path.join(self.res_save_dir, 'tb_log'), launch_tbboard=hyps['launch_tbboard'])
        pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True)
        best_avg_val_acc = 0.
        
        md_output_hook = None
        
        for iter_index in pbar:
            self.models['md'].to_train_mode()
            self.models['fm'].to_eval_mode()
            
            rand_sparsity = random.random() * (hyps['max_sparsity'] - hyps['min_sparsity']) + hyps['min_sparsity']
            elastic_dnn_util.set_master_dnn_sparsity(self.models['md'].models_dict['main'], rand_sparsity)
            
            x, y = next(train_loader)
            x, y = x.to(device), y.to(device)
            
            with torch.no_grad():
                fm_output = self.models['fm'].infer(x)

            if md_output_hook is None:
                md_output_hook = LayerActivation(self.models['md'].models_dict['main'], False, device)
            task_loss = self.models['md'].forward_to_get_task_loss(x, y)
            md_output = md_output_hook.output
            distill_loss = hyps['distill_loss_weight'] * self.models['md'].get_distill_loss(md_output, fm_output)
            total_loss = task_loss + distill_loss
            
            optimizer.zero_grad()
            total_loss.backward()
            optimizer.step()
            scheduler.step()
            
            if (iter_index + 1) % hyps['val_freq'] == 0:
                
                elastic_dnn_util.clear_cached_channel_attention_in_master_dnn(self.models['md'].models_dict['main'])
                md_output_hook.remove()
                md_output_hook = None
                
                cur_md = self.models['md'].models_dict['main']
                md_for_test = deepcopy(self.models['md'].models_dict['main'])
                val_accs = {}
                avg_val_acc = 0.
                bn_stats = {}
                
                for val_sparsity in np.linspace(hyps['min_sparsity'], hyps['max_sparsity'], num=hyps['val_num_sparsities']):
                    elastic_dnn_util.set_master_dnn_sparsity(md_for_test, val_sparsity)
                    bn_stats[f'{val_sparsity:.4f}'] = self.bn_cal(md_for_test, train_loader, hyps['bn_cal_num_iters'], device)
                    self.models['md'].models_dict['main'] = md_for_test
                    self.models['md'].to_eval_mode()
                    val_acc = self.models['md'].get_accuracy(val_loader)
                    
                    val_accs[f'{val_sparsity:.4f}'] = val_acc
                    avg_val_acc += val_acc
                    
                avg_val_acc /= hyps['val_num_sparsities']
                
                self.models['md'].models_dict['main'] = cur_md
                self.models['md'].models_dict['bn_stats'] = bn_stats
                
                self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_last.pt'))
                self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_last.pt'))
                
                if avg_val_acc > best_avg_val_acc:
                    best_avg_val_acc = avg_val_acc
                    self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_best.pt'))
                    self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_best.pt'))
                
            tb_writer.add_scalars(f'losses', dict(task=task_loss, distill=distill_loss, total=total_loss), iter_index)
            pbar.set_description(f'loss: {total_loss:.6f}')
            if (iter_index + 1) >= hyps['val_freq']:
                tb_writer.add_scalars(f'accs/val_accs', val_accs, iter_index)
                tb_writer.add_scalar(f'accs/avg_val_acc', avg_val_acc, iter_index)
                pbar.set_description(f'loss: {total_loss:.6f}, avg_val_acc: {avg_val_acc:.4f}')