File size: 4,455 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import torch
from torch import nn
from methods.elasticdnn.model.base import ElasticDNNUtil
def test(raw_dnn: nn.Module, ignore_layers, elastic_dnn_util: ElasticDNNUtil, input_sample: torch.Tensor, sparsity):
# raw_dnn.eval()
# with torch.no_grad():
# raw_dnn(input_sample)
master_dnn = elastic_dnn_util.convert_raw_dnn_to_master_dnn_with_perf_test(raw_dnn, 16, ignore_layers)
# print(master_dnn)
# exit()
elastic_dnn_util.set_master_dnn_sparsity(master_dnn, sparsity)
# master_dnn.eval()
# with torch.no_grad():
# master_dnn(input_sample)
surrogate_dnn = elastic_dnn_util.extract_surrogate_dnn_via_samples_with_perf_test(master_dnn, input_sample)
if __name__ == '__main__':
from utils.dl.common.env import set_random_seed
set_random_seed(1)
# from torchvision.models import resnet50
# from methods.elasticdnn.model.cnn import ElasticCNNUtil
# raw_cnn = resnet50()
# prunable_layers = []
# for i in range(1, 5):
# for j in range([3, 4, 6, 3][i - 1]):
# prunable_layers += [f'layer{i}.{j}.conv1', f'layer{i}.{j}.conv2']
# ignore_layers = [layer for layer, m in raw_cnn.named_modules() if isinstance(m, nn.Conv2d) and layer not in prunable_layers]
# test(raw_cnn, ignore_layers, ElasticCNNUtil(), torch.rand(1, 3, 224, 224))
ignore_layers = []
from methods.elasticdnn.model.vit import ElasticViTUtil
# raw_vit = torch.load('tmp-master-dnn.pt')
raw_vit = torch.load('')
test(raw_vit, ignore_layers, ElasticViTUtil(), torch.rand(16, 3, 224, 224).cuda(), 0.9)
exit()
from dnns.vit import vit_b_16
# from methods.elasticdnn.model.vit_new import ElasticViTUtil
from methods.elasticdnn.model.vit import ElasticViTUtil
# raw_vit = vit_b_16()
for s in [0.8, 0.9, 0.95]:
raw_vit = vit_b_16().cuda()
ignore_layers = []
test(raw_vit, ignore_layers, ElasticViTUtil(), torch.rand(16, 3, 224, 224).cuda(), s)
# for s in [0, 0.2, 0.4, 0.6, 0.8]:
# pretrained_md_models_dict_path = 'experiments/elasticdnn/vit_b_16/offline/fm_to_md/results/20230518/999999-164524-wo_FBS_trial_dsnet_lr/models/md_best.pt'
# raw_vit = torch.load(pretrained_md_models_dict_path)['main'].cuda()
# ignore_layers = []
# test(raw_vit, ignore_layers, ElasticViTUtil(), torch.rand(16, 3, 224, 224).cuda(), s)
# exit()
# weight = torch.rand((10, 5))
# bias = torch.rand(10)
# x = torch.rand((1, 3, 5))
# t = torch.randperm(5)
# pruned, unpruned = t[0: 3], t[3: ]
# mask = torch.ones_like(x)
# mask[:, :, pruned] = 0
# print(x, x * mask, (x * mask).sum((0, 1)))
# import torch.nn.functional as F
# o1 = F.linear(x * mask, weight, bias)
# # print(o1)
# o2 = F.linear(x[:, :, unpruned], weight[:, unpruned], bias)
# # print(o2)
# print(o1.size(), o2.size(), ((o1 - o2) ** 2).sum())
# weight = torch.rand((130, 5))
# bias = torch.rand(130)
# x = torch.rand((1, 3, 5))
# t = torch.randperm(5)
# pruned, unpruned = t[0: 3], t[3: ]
# mask = torch.ones_like(x)
# mask[:, :, pruned] = 0
# print(x, x * mask, (x * mask).sum((0, 1)))
# import torch.nn.functional as F
# o1 = F.linear(x * mask, weight, bias)
# # print(o1)
# o2 = F.linear(x[:, :, unpruned], weight[:, unpruned], bias)
# # print(o2)
# print(o1.size(), o2.size(), ((o1 - o2) ** 2).sum())
# weight = torch.rand((1768, 768))
# bias = torch.rand(1768)
# x = torch.rand([1, 197, 768])
# t = torch.randperm(768)
# unpruned, pruned = t[0: 144], t[144: ]
# unpruned = unpruned.sort()[0]
# pruned = pruned.sort()[0]
# mask = torch.ones_like(x)
# mask[:, :, pruned] = 0
# print(x.sum((0, 1)).size(), (x * mask).sum((0, 1))[0: 10], x[:, :, unpruned].sum((0, 1))[0: 10])
# import torch.nn.functional as F
# o1 = F.linear(x * mask, weight, bias)
# o2 = F.linear(x[:, :, unpruned], weight[:, unpruned], bias)
# print(o1.sum((0, 1))[0: 10], o2.sum((0, 1))[0: 10], o1.size(), o2.size(), ((o1 - o2).abs()).sum(), ((o1 - o2) ** 2).sum())
# unpruned_indexes = torch.randperm(5)[0: 2]
# o2 = F.linear(x[:, unpruned_indexes], weight[:, unpruned_indexes])
# print(o2) |