File size: 4,455 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
from torch import nn

from methods.elasticdnn.model.base import ElasticDNNUtil


def test(raw_dnn: nn.Module, ignore_layers, elastic_dnn_util: ElasticDNNUtil, input_sample: torch.Tensor, sparsity):
    
    # raw_dnn.eval()
    # with torch.no_grad():
    #     raw_dnn(input_sample)
        
    master_dnn = elastic_dnn_util.convert_raw_dnn_to_master_dnn_with_perf_test(raw_dnn, 16, ignore_layers)
    # print(master_dnn)
    # exit()
    
    elastic_dnn_util.set_master_dnn_sparsity(master_dnn, sparsity)
    
    # master_dnn.eval()
    # with torch.no_grad():
    #     master_dnn(input_sample)
    
    surrogate_dnn = elastic_dnn_util.extract_surrogate_dnn_via_samples_with_perf_test(master_dnn, input_sample)
    
    
if __name__ == '__main__':
    from utils.dl.common.env import set_random_seed
    set_random_seed(1)
    
    # from torchvision.models import resnet50
    # from methods.elasticdnn.model.cnn import ElasticCNNUtil
    # raw_cnn = resnet50()
    # prunable_layers = []
    # for i in range(1, 5):
    #     for j in range([3, 4, 6, 3][i - 1]):
    #         prunable_layers += [f'layer{i}.{j}.conv1', f'layer{i}.{j}.conv2']
    # ignore_layers = [layer for layer, m in raw_cnn.named_modules() if isinstance(m, nn.Conv2d) and layer not in prunable_layers]
    # test(raw_cnn, ignore_layers, ElasticCNNUtil(), torch.rand(1, 3, 224, 224))
    ignore_layers = []
    from methods.elasticdnn.model.vit import ElasticViTUtil
    # raw_vit = torch.load('tmp-master-dnn.pt')
    raw_vit = torch.load('')
    test(raw_vit, ignore_layers, ElasticViTUtil(), torch.rand(16, 3, 224, 224).cuda(), 0.9)
    exit()
    
    
    from dnns.vit import vit_b_16
    # from methods.elasticdnn.model.vit_new import ElasticViTUtil
    from methods.elasticdnn.model.vit import ElasticViTUtil
    # raw_vit = vit_b_16()
    
    for s in [0.8, 0.9, 0.95]:
        raw_vit = vit_b_16().cuda()
        
        ignore_layers = []
        test(raw_vit, ignore_layers, ElasticViTUtil(), torch.rand(16, 3, 224, 224).cuda(), s)
    
    # for s in [0, 0.2, 0.4, 0.6, 0.8]:
    #     pretrained_md_models_dict_path = 'experiments/elasticdnn/vit_b_16/offline/fm_to_md/results/20230518/999999-164524-wo_FBS_trial_dsnet_lr/models/md_best.pt'
    #     raw_vit = torch.load(pretrained_md_models_dict_path)['main'].cuda()
        
    #     ignore_layers = []
    #     test(raw_vit, ignore_layers, ElasticViTUtil(), torch.rand(16, 3, 224, 224).cuda(), s)
    # exit()
    
    
    # weight = torch.rand((10, 5))
    # bias = torch.rand(10)
    # x = torch.rand((1, 3, 5))
    
    # t = torch.randperm(5)
    # pruned, unpruned = t[0: 3], t[3: ]

    # mask = torch.ones_like(x)
    # mask[:, :, pruned] = 0
    
    # print(x, x * mask, (x * mask).sum((0, 1)))

    # import torch.nn.functional as F
    # o1 = F.linear(x * mask, weight, bias)
    # # print(o1)
    
    
    # o2 = F.linear(x[:, :, unpruned], weight[:, unpruned], bias)
    # # print(o2)
    
    # print(o1.size(), o2.size(), ((o1 - o2) ** 2).sum())
    
    
    
    
    # weight = torch.rand((130, 5))
    # bias = torch.rand(130)
    # x = torch.rand((1, 3, 5))
    
    # t = torch.randperm(5)
    # pruned, unpruned = t[0: 3], t[3: ]

    # mask = torch.ones_like(x)
    # mask[:, :, pruned] = 0
    
    # print(x, x * mask, (x * mask).sum((0, 1)))

    # import torch.nn.functional as F
    # o1 = F.linear(x * mask, weight, bias)
    # # print(o1)
    
    
    # o2 = F.linear(x[:, :, unpruned], weight[:, unpruned], bias)
    # # print(o2)
    
    # print(o1.size(), o2.size(), ((o1 - o2) ** 2).sum())
    
    
    
    
    
    # weight = torch.rand((1768, 768))
    # bias = torch.rand(1768)
    # x = torch.rand([1, 197, 768])
    
    # t = torch.randperm(768)
    # unpruned, pruned = t[0: 144], t[144: ]
    # unpruned = unpruned.sort()[0]
    # pruned = pruned.sort()[0]

    # mask = torch.ones_like(x)
    # mask[:, :, pruned] = 0
    
    # print(x.sum((0, 1)).size(), (x * mask).sum((0, 1))[0: 10], x[:, :, unpruned].sum((0, 1))[0: 10])

    # import torch.nn.functional as F
    # o1 = F.linear(x * mask, weight, bias)
    # o2 = F.linear(x[:, :, unpruned], weight[:, unpruned], bias)
    # print(o1.sum((0, 1))[0: 10], o2.sum((0, 1))[0: 10], o1.size(), o2.size(), ((o1 - o2).abs()).sum(), ((o1 - o2) ** 2).sum())
    # unpruned_indexes = torch.randperm(5)[0: 2]
    # o2 = F.linear(x[:, unpruned_indexes], weight[:, unpruned_indexes])
    # print(o2)