File size: 86,659 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 |
import timm
from timm.models._factory import load_checkpoint
import torch
import os
from typing import List, Union, Optional, Tuple
from torch import nn
from torch.jit import Final
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from utils.dl.common.model import get_model_device, set_module, get_module, get_model_latency, get_model_size, LayerActivation3
import torch.nn.functional as F
from utils.common.log import logger
from transformers import AutoTokenizer
import torch.nn.functional as F
from maskrcnn_benchmark.modeling.detector.generalized_vl_rcnn import GeneralizedVLRCNN
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.structures.bounding_box import BoxList
from torchvision import transforms as T
import matplotlib.pyplot as plt
import nltk
import re
from copy import deepcopy
from abc import ABC, abstractmethod
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util, LoRA
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineFMModel, ElasticDNN_OfflineMDModel
from methods.elasticdnn.model.base import Abs, KTakesAll, ElasticDNNUtil, Layer_WrappedWithFBS
from transformers.models.bert.modeling_bert import BertSelfAttention
from transformers import BertConfig
import math
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
def collect_mm_fn(batch):
if len(batch[0]) == 2:
dict = {'images' : [], 'targets' : []}
else:
dict = {'images' : [], 'targets' : [], "info_imgs" : [], "ids" : []}
for item in batch:
if len(item) == 2:
img, new_target = item
if len(new_target) == 0:
continue
dict['images'].append(img)
dict['targets'].append(new_target)
else:
img, new_target, info_imgs, ids = item
if len(new_target) == 0:
continue
dict['images'].append(img)
dict['targets'].append(new_target)
dict['info_imgs'].append(info_imgs)
dict['ids'].append(ids)
return dict, torch.Tensor([0])
def run_ner(caption):
noun_phrases = find_noun_phrases(caption)
noun_phrases = [remove_punctuation(phrase) for phrase in noun_phrases]
noun_phrases = [phrase for phrase in noun_phrases if phrase != '']
relevant_phrases = noun_phrases
labels = noun_phrases
tokens_positive = []
for entity, label in zip(relevant_phrases, labels):
try:
# search all occurrences and mark them as different entities
for m in re.finditer(entity, caption.lower()):
tokens_positive.append([[m.start(), m.end()]])
except:
print("noun entities:", noun_phrases)
print("entity:", entity)
print("caption:", caption.lower())
return tokens_positive
def build_transform(cfg, min_image_size):
"""
Creates a basic transformation that was used to train the models
"""
# we are loading images with OpenCV, so we don't need to convert them
# to BGR, they are already! So all we need to do is to normalize
# by 255 if we want to convert to BGR255 format, or flip the channels
# if we want it to be in RGB in [0-1] range.
if cfg.INPUT.TO_BGR255:
to_bgr_transform = T.Lambda(lambda x: x * 255)
else:
to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])
normalize_transform = T.Normalize(
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
)
transform = T.Compose(
[
T.ToPILImage(),
T.Resize(min_image_size) if min_image_size is not None else lambda x: x,
T.ToTensor(),
to_bgr_transform,
normalize_transform,
]
)
return transform
def remove_punctuation(text: str) -> str:
punct = ['|', ':', ';', '@', '(', ')', '[', ']', '{', '}', '^',
'\'', '\"', '’', '`', '?', '$', '%', '#', '!', '&', '*', '+', ',', '.'
]
for p in punct:
text = text.replace(p, '')
return text.strip()
def create_positive_map_label_to_token_from_positive_map(positive_map, plus=0):
positive_map_label_to_token = {}
for i in range(len(positive_map)):
positive_map_label_to_token[i + plus] = torch.nonzero(positive_map[i], as_tuple=True)[0].tolist()
return positive_map_label_to_token
def create_positive_map(tokenized, tokens_positive):
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j"""
positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float)
for j, tok_list in enumerate(tokens_positive):
for (beg, end) in tok_list:
try:
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
except Exception as e:
print("beg:", beg, "end:", end)
print("token_positive:", tokens_positive)
# print("beg_pos:", beg_pos, "end_pos:", end_pos)
raise e
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
positive_map[j, beg_pos: end_pos + 1].fill_(1)
return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)
def find_noun_phrases(caption: str) -> List[str]:
caption = caption.lower()
tokens = nltk.word_tokenize(caption)
pos_tags = nltk.pos_tag(tokens)
grammar = "NP: {<DT>?<JJ.*>*<NN.*>+}"
cp = nltk.RegexpParser(grammar)
result = cp.parse(pos_tags)
noun_phrases = list()
for subtree in result.subtrees():
if subtree.label() == 'NP':
noun_phrases.append(' '.join(t[0] for t in subtree.leaves()))
return noun_phrases
class Glip(nn.Module):
def __init__(self, config, pretrain_path, min_image_size=None,confidence_threshold=0.7):
super(Glip, self).__init__()
state_dict = torch.load(pretrain_path)['model']
self.min_image_size = min_image_size
self.cfg = config
self.confidence_threshold = confidence_threshold
self.tokenizer = AutoTokenizer.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.MODEL_PATH)
self.device = torch.device(cfg.MODEL.DEVICE)
for k in list(state_dict.keys()):
if k.startswith('module'):
new_k = k.replace('module.', '')
state_dict[new_k] = state_dict.pop(k)
self.model = GeneralizedVLRCNN(config)
self.model.load_state_dict(state_dict, strict=False)
# self.transform = build_transform(config, min_image_size)
def forward(self, images, targets, for_training=None):
# img_list = []
# for image in images:
# img_list.append(self.transform(image).to(self.device))
# if isinstance(texts, list):
# # we directly provided a list of category names
# caption_string = ""
# tokens_positive = []
# seperation_tokens = " . "
# for word in texts:
# tokens_positive.append([len(caption_string), len(caption_string) + len(word)])
# caption_string += word
# caption_string += seperation_tokens
# tokenized = self.tokenizer([caption_string], return_tensors="pt")
# tokens_positive = [tokens_positive]
# texts = [caption_string]
# print(tokens_positive)
# else:
device = torch.device(cfg.MODEL.DEVICE)
images = [image.to(device) for image in images]
targets = [target.to(device) for target in targets]
texts = [t.get_field("caption") for t in targets if "caption" in t.fields()]
positive_map = []
# if custom_entity is None:
# tokens_positive = self.run_ner(texts)
# print(tokens_positive)
# process positive map
if self.training == False:
try:
tokens_positive = run_ner(texts[0])
except:
print('a')
tokenized = self.tokenizer(texts, return_tensors="pt")
positive_map = create_positive_map(tokenized, tokens_positive)
if self.cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
plus = 1
else:
plus = 0
positive_map = create_positive_map_label_to_token_from_positive_map(positive_map, plus=plus)
else:
for i, text in enumerate(texts):
tokenized = self.tokenizer(text, return_tensors="pt")
tokens_positive = targets[i].get_field('tokens_positive')
positive_map.append(create_positive_map(tokenized, tokens_positive))
positive_map = torch.cat(positive_map, dim=0).to(device)
if self.training:
proposal_losses = self.model(images, targets, texts, positive_map=positive_map)
return proposal_losses
else:
proposals, token_logits, dot_product_logits = self.model(images, targets, texts, positive_map=positive_map)
proposal = self._post_process(proposals[0])
return proposal, token_logits, dot_product_logits
def _post_process_fixed_thresh(self, predictions):
scores = predictions.get_field("scores")
labels = predictions.get_field("labels").tolist()
thresh = scores.clone()
for i, lb in enumerate(labels):
if isinstance(self.confidence_threshold, float):
thresh[i] = self.confidence_threshold
elif len(self.confidence_threshold) == 1:
thresh[i] = self.confidence_threshold[0]
else:
thresh[i] = self.confidence_threshold[lb - 1]
keep = torch.nonzero(scores > thresh).squeeze(1)
predictions = predictions[keep]
scores = predictions.get_field("scores")
_, idx = scores.sort(0, descending=True)
return predictions[idx]
def _post_process(self, predictions, threshold=0.5):
scores = predictions.get_field("scores")
labels = predictions.get_field("labels").tolist()
thresh = scores.clone()
for i, lb in enumerate(labels):
if isinstance(self.confidence_threshold, float):
thresh[i] = threshold
elif len(self.confidence_threshold) == 1:
thresh[i] = threshold
else:
thresh[i] = self.confidence_threshold[lb - 1]
keep = torch.nonzero(scores > thresh).squeeze(1)
predictions = predictions[keep]
scores = predictions.get_field("scores")
_, idx = scores.sort(0, descending=True)
return predictions[idx]
# @torch.no_grad()
# def clip_vit_b_16():
# # https://huggingface.co/openai/clip-vit-base-patch16
# model = CLIPModelCanReceiveTextEmbeds.from_pretrained("openai/clip-vit-base-patch16")
# processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
# print(model)
# from PIL import Image
# import requests
# image = Image.open('/data/zql/datasets/Caltech-256/data/caltech256/256_ObjectCategories/003.backpack/003_0001.jpg')
# inputs = processor(text=["a photo of a dog", "a photo of a backpack", "a photo of a cat"], images=image, return_tensors="pt", padding=True)
# print(inputs)
# from utils.dl.common.model import LayerActivation2, get_module
# input_embed_hook = LayerActivation2(get_module(model, 'text_model.embeddings'))
# outputs = model(**inputs)
# logits_per_image = outputs.logits_per_image # this is the image-text similarity score
# probs = logits_per_image.softmax(dim=1)
# print(probs)
# input_embed = input_embed_hook.output
# input_embed_hook.remove()
# torch.save(input_embed, os.path.join(os.path.dirname(__file__), './test_input_embed.pth'))
# print('embed', input_embed.size())
# del inputs['input_ids']
# inputs['input_embeds'] = input_embed
# outputs = model(**inputs)
# logits_per_image = outputs.logits_per_image # this is the image-text similarity score
# probs = logits_per_image.softmax(dim=1)
# print(probs)
@torch.no_grad()
def glip_model(config_path, pretrain_path):
# https://huggingface.co/openai/clip-vit-base-patch16
cfg.merge_from_file(config_path)
return cfg, Glip(cfg, pretrain_path)
class ToQKV_WrappedWithLoRA(nn.Module):
def __init__(self, fc: nn.Linear, ab_r: int):
super(ToQKV_WrappedWithLoRA, self).__init__()
self.fc = fc
self.ab = self.create_ab_as_linear(fc.weight.data, ab_r)
def create_ab_as_linear(self, fc_weight: torch.Tensor, ab_r: int):
res = nn.Sequential(
LoRA(fc_weight.size(1), fc_weight.size(0) // ab_r, bias=False),
LoRA(fc_weight.size(0) // ab_r, fc_weight.size(0), bias=False)
).to(fc_weight.device)
nn.init.kaiming_uniform_(res[0].weight, a=5 ** 0.5)
nn.init.zeros_(res[1].weight)
return res
def forward(self, x):
x1 = self.fc(x)
x2 = self.ab(x)
return x1 + x2
def get_model_latency_2(model: torch.nn.Module, sample: dict, sample_num: int,
device: str, warmup_sample_num: int, return_detail=False):
"""Get the latency (inference time) of a PyTorch model.
Reference: https://deci.ai/resources/blog/measure-inference-time-deep-neural-networks/
Args:
model (torch.nn.Module): A PyTorch model.
model_input_size (Tuple[int]): Typically be `(1, 3, 32, 32)` or `(1, 3, 224, 224)`.
sample_num (int): How many inputs which size is :attr:`model_input_size` will be tested and compute the average latency as result.
device (str): Typically be 'cpu' or 'cuda'.
warmup_sample_num (int): Let model perform some dummy inference to warm up the test environment to avoid measurement loss.
return_detail (bool, optional): Beside the average latency, return all result measured. Defaults to False.
Returns:
Union[float, Tuple[float, List[float]]]: The average latency (and all lantecy data) of :attr:`model`.
"""
# if isinstance(model_input_size, tuple):
# dummy_input = torch.rand(model_input_size).to(device)
# else:
# dummy_input = model_input_size
model = model.to(device)
model.eval()
# warm up
with torch.no_grad():
for _ in range(warmup_sample_num):
model(**sample)
infer_time_list = []
if device == 'cuda' or 'cuda' in str(device):
with torch.no_grad():
for _ in range(sample_num):
s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
s.record()
model(**sample)
e.record()
torch.cuda.synchronize()
cur_model_infer_time = s.elapsed_time(e) / 1000.
infer_time_list += [cur_model_infer_time]
else:
with torch.no_grad():
for _ in range(sample_num):
start = time.time()
model(**sample)
cur_model_infer_time = time.time() - start
infer_time_list += [cur_model_infer_time]
avg_infer_time = sum(infer_time_list) / sample_num
if return_detail:
return avg_infer_time, infer_time_list
return avg_infer_time
class WindowAttention(nn.Module):
""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
""" Forward function.
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class BiMultiHeadAttention(nn.Module):
def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None):
super(BiMultiHeadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.v_dim = v_dim
self.l_dim = l_dim
assert (
self.head_dim * self.num_heads == self.embed_dim
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
self.scale = self.head_dim ** (-0.5)
self.dropout = dropout
self.v_proj = nn.Linear(self.v_dim, self.embed_dim)
self.l_proj = nn.Linear(self.l_dim, self.embed_dim)
self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim)
self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim)
self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim)
self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim)
self.stable_softmax_2d = cfg.MODEL.DYHEAD.FUSE_CONFIG.STABLE_SOFTMAX_2D
self.clamp_min_for_underflow = cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MIN_FOR_UNDERFLOW
self.clamp_max_for_overflow = cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MAX_FOR_OVERFLOW
self._reset_parameters()
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def _reset_parameters(self):
nn.init.xavier_uniform_(self.v_proj.weight)
self.v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.l_proj.weight)
self.l_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.values_v_proj.weight)
self.values_v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.values_l_proj.weight)
self.values_l_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.out_v_proj.weight)
self.out_v_proj.bias.data.fill_(0)
nn.init.xavier_uniform_(self.out_l_proj.weight)
self.out_l_proj.bias.data.fill_(0)
def forward(self, v, l, attention_mask_l=None):
bsz, tgt_len, embed_dim = v.size()
query_states = self.v_proj(v) * self.scale
key_states = self._shape(self.l_proj(l), -1, bsz)
value_v_states = self._shape(self.values_v_proj(v), -1, bsz)
value_l_states = self._shape(self.values_l_proj(l), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_v_states = value_v_states.view(*proj_shape)
value_l_states = value_l_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
)
# attn_weights_l = nn.functional.softmax(attn_weights.transpose(1, 2), dim=-1)
if self.stable_softmax_2d:
attn_weights = attn_weights - attn_weights.max()
if self.clamp_min_for_underflow:
attn_weights = torch.clamp(attn_weights, min=-50000) # Do not increase -50000, data type half has quite limited range
if self.clamp_max_for_overflow:
attn_weights = torch.clamp(attn_weights, max=50000) # Do not increase 50000, data type half has quite limited range
attn_weights_T = attn_weights.transpose(1, 2)
attn_weights_l = (attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[
0])
if self.clamp_min_for_underflow:
attn_weights_l = torch.clamp(attn_weights_l, min=-50000) # Do not increase -50000, data type half has quite limited range
if self.clamp_max_for_overflow:
attn_weights_l = torch.clamp(attn_weights_l, max=50000) # Do not increase 50000, data type half has quite limited range
attn_weights_l = attn_weights_l.softmax(dim=-1)
if attention_mask_l is not None:
assert (attention_mask_l.dim() == 2)
attention_mask = attention_mask_l.unsqueeze(1).unsqueeze(1)
attention_mask = attention_mask.expand(bsz, 1, tgt_len, src_len)
attention_mask = attention_mask.masked_fill(attention_mask == 0, -9e15)
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights_v = nn.functional.softmax(attn_weights, dim=-1)
attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training)
attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training)
attn_output_v = torch.bmm(attn_probs_v, value_l_states)
attn_output_l = torch.bmm(attn_probs_l, value_v_states)
if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}"
)
if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim):
raise ValueError(
f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}"
)
attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output_v = attn_output_v.transpose(1, 2)
attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim)
attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim)
attn_output_l = attn_output_l.transpose(1, 2)
attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim)
attn_output_v = self.out_v_proj(attn_output_v)
attn_output_l = self.out_l_proj(attn_output_l)
return attn_output_v, attn_output_l
class BertSelfAttentionPrunable(BertSelfAttention):
def __init__(self):
config = BertConfig.from_pretrained('new_impl/cv/glip/object_detection/bert-base-uncased')
super(BertSelfAttentionPrunable, self).__init__(config)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.query.out_features,) # NOTE: modified
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
@staticmethod
def init_from_exist_self_attn(attn: BertSelfAttention):
# print(attn)
res = BertSelfAttentionPrunable()
for attr in dir(attn):
# if str(attr) in ['transpose_for_scores'] or str(attr).startswith('_'):
# continue
# if isinstance(getattr(attn, attr), nn.Module):
# print(attr)
if isinstance(getattr(attn, attr), nn.Module):
try:
# print(attr, 'ok')
setattr(res, attr, getattr(attn, attr))
except Exception as e:
print(attr, str(e))
return res
class FM_to_MD_GLIP_Util(FM_to_MD_Util):
def init_md_from_fm_by_reducing_width_with_perf_test_2(self, fm: nn.Module, reducing_width_ratio: int,
samples: torch.Tensor) -> nn.Module:
fm_size = get_model_size(fm, True)
fm_latency = get_model_latency_2(fm, samples, 20,
get_model_device(fm), 20, False)
master_dnn = self.init_md_from_fm_by_reducing_width(fm, reducing_width_ratio)
master_dnn_size = get_model_size(master_dnn, True)
logger.debug(f'inited master DNN: {master_dnn}')
# from utils.dl.common.model import get_module
# print('after generating')
# get_module(fm, 'head').debug()
# get_module(master_dnn, 'head').debug()
# print('test master latency')
master_dnn_latency = get_model_latency_2(fm, samples, 20,
get_model_device(fm), 20, False)
logger.info(f'init master DNN (w/o FBS yet) by reducing foundation model\'s width (by {reducing_width_ratio:d}x)')
logger.info(f'foundation model ({fm_size:.3f}MB, {fm_latency:.4f}s/sample) -> '
f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample)\n'
f'(model size: ↓ {(fm_size / master_dnn_size):.2f}x, '
f'latency: ↓ {(fm_latency / master_dnn_latency):.2f}x)')
return master_dnn
def init_md_from_fm_by_reducing_width(self, fm: nn.Module, reducing_width_ratio: int, sparsity=0.0) -> nn.Module:
#sparsity: it is mainly used to make a distilled model used in the baseline algorithm, and the parameter can ensure that the model has the same size as the model used in the online algorithm.
fm_vit = deepcopy(fm)
def _f(n):
return int(n // reducing_width_ratio)
# def _rand_indexes(n):
# return torch.randperm(n)[0: int(n // reducing_width_ratio)]
def l1_max_indexes(p: torch.Tensor, dim=0):
assert dim in [0, 1]
assert p.dim() in [1, 2, 4]
if dim == 1:
p = p.T
p_norm = p.abs().contiguous().view(p.size(0), -1).sum(dim=1)
n = p.size(0)
t1 = p_norm.argsort(descending=True)[0: int(n // reducing_width_ratio)]
t2 = t1.sort()[0]
return p_norm.argsort(descending=True)[0: int(n // reducing_width_ratio)].sort()[0]
def l1_max_indexes_with_sparsity(p: torch.Tensor, dim=0):
assert dim in [0, 1]
assert p.dim() in [1, 2, 4]
if dim == 1:
p = p.T
p_norm = p.abs().contiguous().view(p.size(0), -1).sum(dim=1)
n = p.size(0)
return p_norm.argsort(descending=True)[0: int(n // reducing_width_ratio * (1 - sparsity))].sort()[0]
for layer_i, layer in enumerate(fm_vit.model.backbone.body.layers):
for block in layer.blocks:
ori_attn = block.attn
new_attn = WindowAttention(ori_attn.dim, ori_attn.window_size, ori_attn.num_heads, True, ori_attn.scale, 0., 0.)
new_attn.relative_position_index = ori_attn.relative_position_index
new_attn.relative_position_bias_table = ori_attn.relative_position_bias_table
new_attn.qkv = ori_attn.qkv
new_attn.attn_drop = ori_attn.attn_drop
new_attn.proj = ori_attn.proj
new_attn.proj_drop = ori_attn.proj_drop
set_module(block, 'attn', new_attn)
# first_attn = True
for layer_i, layer in enumerate(fm_vit.model.backbone.body.layers):
for block_i, block in enumerate(layer.blocks):
qkv = block.attn.qkv
new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features),
qkv.bias is not None, qkv.weight.device)
indexes = l1_max_indexes(qkv.weight.data, 0)
new_qkv.weight.data.copy_(qkv.weight.data[indexes])
if qkv.bias is not None:
new_qkv.bias.data.copy_(qkv.bias.data[indexes])
# fm_vit.model.backbone.body.layers[0].blocks.0.attn.qkv
set_module(fm_vit, f'model.backbone.body.layers.{layer_i}.blocks.{block_i}.attn.qkv', new_qkv)
proj = block.attn.proj
new_proj = nn.Linear(_f(proj.in_features), proj.out_features,
proj.bias is not None, proj.weight.device)
new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
if proj.bias is not None:
new_proj.bias.data.copy_(proj.bias.data)
set_module(fm_vit, f'model.backbone.body.layers.{layer_i}.blocks.{block_i}.attn.proj', new_proj)
fc1 = block.mlp.fc1
new_fc1 = nn.Linear(fc1.in_features, int(_f(fc1.out_features) * (1 - sparsity)),
fc1.bias is not None, fc1.weight.device)
indexes = l1_max_indexes_with_sparsity(fc1.weight.data, 0)
new_fc1.weight.data.copy_(fc1.weight.data[indexes])
if fc1.bias is not None:
new_fc1.bias.data.copy_(fc1.bias.data[indexes])
set_module(fm_vit, f'model.backbone.body.layers.{layer_i}.blocks.{block_i}.mlp.fc1', new_fc1)
fc2 = block.mlp.fc2
new_fc2 = nn.Linear(int(_f(fc2.in_features) * (1 - sparsity)), fc2.out_features,
fc2.bias is not None, fc2.weight.device)
new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes_with_sparsity(fc2.weight.data, 1)])
if fc2.bias is not None:
new_fc2.bias.data.copy_(fc2.bias.data)
set_module(fm_vit, f'model.backbone.body.layers.{layer_i}.blocks.{block_i}.mlp.fc2', new_fc2)
for block in fm_vit.model.language_backbone.body.model.encoder.layer:
set_module(block, 'attention.self', BertSelfAttentionPrunable.init_from_exist_self_attn(block.attention.self))
for block_i, block in enumerate(fm_vit.model.language_backbone.body.model.encoder.layer):
for k in ['query', 'key', 'value']:
qkv = get_module(block, f'attention.self.{k}')
new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features),
qkv.bias is not None, qkv.weight.device)
indexes = l1_max_indexes(qkv.weight.data, 0)
new_qkv.weight.data.copy_(qkv.weight.data[indexes])
if qkv.bias is not None:
new_qkv.bias.data.copy_(qkv.bias.data[indexes])
set_module(block, f'attention.self.{k}', new_qkv)
proj = get_module(block, f'attention.output.dense')
new_proj = nn.Linear(_f(proj.in_features), proj.out_features,
proj.bias is not None, proj.weight.device)
new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
if proj.bias is not None:
new_proj.bias.data.copy_(proj.bias.data)
set_module(block, f'attention.output.dense', new_proj)
fc1 = get_module(block, f'intermediate.dense')
new_fc1 = nn.Linear(fc1.in_features, int(_f(fc1.out_features) * (1 - sparsity)),
fc1.bias is not None, fc1.weight.device)
indexes = l1_max_indexes_with_sparsity(fc1.weight.data, 0)
new_fc1.weight.data.copy_(fc1.weight.data[indexes])
if fc1.bias is not None:
new_fc1.bias.data.copy_(fc1.bias.data[indexes])
set_module(block, f'intermediate.dense', new_fc1)
fc2 = get_module(block, f'output.dense')
new_fc2 = nn.Linear(int(_f(fc2.in_features) * (1 - sparsity)), fc2.out_features,
fc2.bias is not None, fc2.weight.device)
new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes_with_sparsity(fc2.weight.data, 1)])
if fc2.bias is not None:
new_fc2.bias.data.copy_(fc2.bias.data)
set_module(block, f'output.dense', new_fc2)
for block_i, block in enumerate(fm_vit.model.rpn.head.dyhead_tower):
if block_i % 3 == 0:
tmp = block.b_attn.attn
tmp.head_dim = int(tmp.head_dim // reducing_width_ratio)
tmp.embed_dim = int(tmp.embed_dim // reducing_width_ratio)
set_module(block, 'b_attn.attn', tmp)
for k in ['v_proj', 'l_proj', 'values_v_proj', 'values_l_proj']:
qkv = get_module(block, f'b_attn.attn.{k}')
new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features),
qkv.bias is not None, qkv.weight.device)
indexes = l1_max_indexes(qkv.weight.data, 0)
new_qkv.weight.data.copy_(qkv.weight.data[indexes])
if qkv.bias is not None:
new_qkv.bias.data.copy_(qkv.bias.data[indexes])
set_module(block, f'b_attn.attn.{k}', new_qkv)
for k in ['out_v_proj', 'out_l_proj']:
qkv = get_module(block, f'b_attn.attn.{k}')
new_qkv = nn.Linear(_f(qkv.in_features), qkv.out_features,
qkv.bias is not None, qkv.weight.device)
new_qkv.weight.data.copy_(qkv.weight.data[:, l1_max_indexes(qkv.weight.data, 1)])
if qkv.bias is not None:
new_qkv.bias.data.copy_(qkv.bias.data)
set_module(block, f'b_attn.attn.{k}', new_qkv)
elif block_i % 3 == 1:
set_module(block, 'attention.self', BertSelfAttentionPrunable.init_from_exist_self_attn(block.attention.self))
for k in ['query', 'key', 'value']:
qkv = get_module(block, f'attention.self.{k}')
new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features),
qkv.bias is not None, qkv.weight.device)
indexes = l1_max_indexes(qkv.weight.data, 0)
new_qkv.weight.data.copy_(qkv.weight.data[indexes])
if qkv.bias is not None:
new_qkv.bias.data.copy_(qkv.bias.data[indexes])
set_module(block, f'attention.self.{k}', new_qkv)
proj = get_module(block, f'attention.output.dense')
new_proj = nn.Linear(_f(proj.in_features), proj.out_features,
proj.bias is not None, proj.weight.device)
new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
if proj.bias is not None:
new_proj.bias.data.copy_(proj.bias.data)
set_module(block, f'attention.output.dense', new_proj)
fc1 = get_module(block, f'intermediate.dense')
new_fc1 = nn.Linear(fc1.in_features, int(_f(fc1.out_features) * (1 - sparsity)),
fc1.bias is not None, fc1.weight.device)
indexes = l1_max_indexes_with_sparsity(fc1.weight.data, 0)
new_fc1.weight.data.copy_(fc1.weight.data[indexes])
if fc1.bias is not None:
new_fc1.bias.data.copy_(fc1.bias.data[indexes])
set_module(block, f'intermediate.dense', new_fc1)
fc2 = get_module(block, f'output.dense')
new_fc2 = nn.Linear(int(_f(fc2.in_features) * (1 - sparsity)), fc2.out_features,
fc2.bias is not None, fc2.weight.device)
new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes_with_sparsity(fc2.weight.data, 1)])
if fc2.bias is not None:
new_fc2.bias.data.copy_(fc2.bias.data)
set_module(block, f'output.dense', new_fc2)
# reduce dim_embedding
# if name.endswith('patch_embed.proj'):
# continue
# new_layer = nn.Conv2d(module.in_channels, _f(module.out_channels), module.kernel_size, module.stride,
# module.padding, module.dilation, module.groups, module.bias is not None, module.padding_mode,
# module.weight.device)
# rand_indexes = l1_max_indexes(module.weight.data)
# new_layer.weight.data.copy_(module.weight.data[rand_indexes])
# if new_layer.bias is not None:
# new_layer.bias.data.copy_(module.bias.data[rand_indexes])
# fm_vit.cls_token.data = fm_vit.cls_token.data[:, :, rand_indexes]
# fm_vit.pos_embed.data = fm_vit.pos_embed.data[:, :, rand_indexes]
# elif isinstance(module, nn.Linear):
# if 'head' in name:
# continue
# new_layer = nn.Linear(_f(module.in_features), module.out_features,
# module.bias is not None, module.weight.device)
# new_layer.weight.data.copy_(module.weight.data[:, l1_max_indexes(module.weight.data, 1)])
# if new_layer.bias is not None:
# new_layer.bias.data.copy_(module.bias.data)
# else:
# first_attn = False
# if first_attn:
# first_attn = False
# new_layer = nn.Linear(module.in_features, _f(module.out_features),
# module.bias is not None, module.weight.device)
# rand_indexes = l1_max_indexes(module.weight.data)
# new_layer.weight.data.copy_(module.weight.data[rand_indexes])
# if new_layer.bias is not None:
# new_layer.bias.data.copy_(module.bias.data[rand_indexes])
# else:
# new_layer = nn.Linear(_f(module.in_features), _f(module.out_features),
# module.bias is not None, module.weight.device)
# rand_indexes = l1_max_indexes(module.weight.data)
# new_layer.weight.data.copy_(module.weight.data[rand_indexes][:, l1_max_indexes(module.weight.data, 1)])
# if new_layer.bias is not None:
# new_layer.bias.data.copy_(module.bias.data[rand_indexes])
# elif isinstance(module, nn.LayerNorm) and ('block' in name or name == 'norm' or name == 'norm.0'):
# new_layer = nn.LayerNorm(_f(module.normalized_shape[0]), eps=module.eps, device=module.weight.device)
# rand_indexes = l1_max_indexes(module.weight.data)
# new_layer.weight.data.copy_(module.weight.data[rand_indexes])
# new_layer.bias.data.copy_(module.bias.data[rand_indexes])
# else:
# continue
# original_layer_str = str(module)
# set_module(fm_vit, name, new_layer)
# logger.debug(f'set_module, {name}, {new_layer}')
# logger.debug(f'slim {name} from {original_layer_str} to {new_layer}')
return fm_vit
class FMLoRA_GLIP_Util(FMLoRA_Util):
def train_only_lora_and_conv(self, fm: nn.Module):
res = []
for n, m in fm.named_modules():
if isinstance(m, LoRA) or isinstance(m, nn.Conv2d):
for p in m.parameters():
p.requires_grad = True
res += [p]
else:
for p in m.parameters():
p.requires_grad = False
return res
@torch.no_grad()
def add_lora_ab_to_fm(self, fm: nn.Module, ab_r: int, samples):
fm.eval()
# samples = {'images' : samples[0], 'targets' : samples[1]}
for k, v in samples.items():
if isinstance(v, torch.Tensor) or isinstance(v, BoxList):
samples[k] = v.to(get_model_device(fm))
print(k)
_, o1_token_logits, o1_dot_product_logits = fm(**samples)
mo_list = {k:v for k, v in fm.named_modules()}
for name, module in fm.named_modules():
if '.proj' in name or 'out' in name:
continue
if name.endswith(('k_proj', 'q_proj', 'v_proj', 'qkv', 'attn.proj', 'l_proj', 'query', 'key', 'value')):
set_module(fm, name, ToQKV_WrappedWithLoRA(module, ab_r))
_, o2_token_logits, o2_dot_product_logits = fm(**samples)
output_diff = 0.
for o1, o2 in list(zip(o1_dot_product_logits, o2_dot_product_logits)):
output_diff += ((o1 - o2) ** 2).sum()
if o1_token_logits is not None:
output_diff += ((o1_token_logits - o2_token_logits) ** 2).sum()
assert output_diff < 1e-5
return fm
@torch.no_grad()
def absorb_lora_and_recover_net_structure(self, fm: nn.Module, samples: dict):
fm.eval()
# print('absorb lora before')
for k, v in samples.items():
if isinstance(v, torch.Tensor):
samples[k] = v.to(get_model_device(fm))
print(k)
_, o1_token_logits, o1_dot_product_logits = fm(**samples)
for name, module in fm.named_modules():
if not isinstance(module, ToQKV_WrappedWithLoRA):
continue
fc = module.fc
ab = module.ab
fc.weight.add_(ab[1].weight @ ab[0].weight)
set_module(fm, name, fc)
# print('absorb lora after')
_, o2_token_logits, o2_dot_product_logits = fm(**samples)
output_diff = 0.
for o1, o2 in list(zip(o1_dot_product_logits, o2_dot_product_logits)):
output_diff += ((o1 - o2) ** 2).sum()
if o1_token_logits is not None:
output_diff += ((o1_token_logits - o2_token_logits) ** 2).sum()
assert output_diff < 1e-3, output_diff
return fm
class ElasticDNN_OfflineMMDetFMModel(ElasticDNN_OfflineFMModel):
def __init__(self, name: str, models_dict_path: str, device: str, num_classes=10, collate_fn=None):
super().__init__(name, models_dict_path, device)
self.num_classes = num_classes
self.collate_fn = collate_fn
def get_accuracy(self, test_loader, *args, **kwargs):
# print('DeeplabV3: start test acc')
_d = test_loader.dataset
from data import build_dataloader
if _d.__class__.__name__ == 'MergedDataset':
# print('\neval on merged datasets')
datasets = _d.datasets
if self.collate_fn is None:
test_loaders = [build_dataloader(d, test_loader.batch_size, test_loader.num_workers, False, None, collate_fn=None) for d in datasets]
else:
test_loaders = [build_dataloader(d, test_loader.batch_size, test_loader.num_workers, False, None, collate_fn=self.collate_fn) for d in datasets]
accs = [self.get_accuracy(loader) for loader in test_loaders]
# print(accs)
return sum(accs) / len(accs)
# print('dataset len', len(test_loader.dataset))
model = self.models_dict['main']
device = self.device
model.eval()
# print('# classes', model.num_classes)
model = model.to(device)
from evaluator import COCOEvaluator, MMCOCODecoder
from utils.common.others import HiddenPrints
with torch.no_grad():
with HiddenPrints():
evaluator = COCOEvaluator(
dataloader=test_loader,
img_size=(416, 416),
confthre=0.01,
nmsthre=0.65,
num_classes=len(test_loader.dataset.classes),
testdev=True
)
res = evaluator.evaluate(model, False, False, decoder=MMCOCODecoder)
map50 = res[1]
# print('eval info', res[-1])
return map50
def infer(self, x, *args, **kwargs):
if len(args) > 0:
print(args, len(args))
return self.models_dict['main'](x, *args) # forward(x, label)
return self.models_dict['main'](**x)
class ElasticDNN_OfflineMMDetMDModel(ElasticDNN_OfflineMDModel):
def __init__(self, name: str, models_dict_path: str, device: str, num_classes=10, collate_fn=None):
super().__init__(name, models_dict_path, device)
self.num_classes = num_classes
self.collate_fn = collate_fn
def get_accuracy(self, test_loader, *args, **kwargs):
# print('DeeplabV3: start test acc')
_d = test_loader.dataset
from data import build_dataloader
if _d.__class__.__name__ == 'MergedDataset':
# print('\neval on merged datasets')
datasets = _d.datasets
if self.collate_fn is None:
test_loaders = [build_dataloader(d, test_loader.batch_size, test_loader.num_workers, False, None, collate_fn=None) for d in datasets]
else:
test_loaders = [build_dataloader(d, test_loader.batch_size, test_loader.num_workers, False, None, collate_fn=self.collate_fn) for d in datasets]
accs = [self.get_accuracy(loader) for loader in test_loaders]
# print(accs)
return sum(accs) / len(accs)
# print('dataset len', len(test_loader.dataset))
model = self.models_dict['main']
device = self.device
model.eval()
# print('# classes', model.num_classes)
model = model.to(device)
from evaluator import COCOEvaluator, MMCOCODecoder
from utils.common.others import HiddenPrints
with torch.no_grad():
with HiddenPrints():
evaluator = COCOEvaluator(
dataloader=test_loader,
img_size=(416, 416),
confthre=0.01,
nmsthre=0.65,
num_classes=len(test_loader.dataset.classes),
testdev=True
)
res = evaluator.evaluate(model, False, False, decoder=MMCOCODecoder)
map50 = res[1]
# print('eval info', res[-1])
return map50
def infer(self, x, *args, **kwargs):
if len(args) > 0:
return self.models_dict['main'](x, *args) # forward(x, label)
return self.models_dict['main'](**x)
class SqueezeLast(nn.Module):
def __init__(self):
super(SqueezeLast, self).__init__()
def forward(self, x):
return x.squeeze(-1)
class ProjConv_WrappedWithFBS(Layer_WrappedWithFBS):
def __init__(self, raw_conv2d: nn.Conv2d, r):
super(ProjConv_WrappedWithFBS, self).__init__()
self.fbs = nn.Sequential(
Abs(),
nn.AdaptiveAvgPool2d(1),
nn.Flatten(),
nn.Linear(raw_conv2d.in_channels, raw_conv2d.out_channels // r),
nn.ReLU(),
nn.Linear(raw_conv2d.out_channels // r, raw_conv2d.out_channels),
nn.ReLU()
)
self.raw_conv2d = raw_conv2d
# self.raw_bn = raw_bn # remember clear the original BNs in the network
nn.init.constant_(self.fbs[5].bias, 1.)
nn.init.kaiming_normal_(self.fbs[5].weight)
def forward(self, x):
raw_x = self.raw_conv2d(x)
if self.use_cached_channel_attention and self.cached_channel_attention is not None:
channel_attention = self.cached_channel_attention
else:
self.cached_raw_channel_attention = self.fbs(x)
self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
channel_attention = self.cached_channel_attention
return raw_x * channel_attention.unsqueeze(2).unsqueeze(3)
class Linear_WrappedWithFBS(Layer_WrappedWithFBS):
def __init__(self, linear: nn.Linear, r):
super(Linear_WrappedWithFBS, self).__init__()
self.linear = linear
# for conv: (B, C_in, H, W) -> (B, C_in) -> (B, C_out)
# for mlp in ViT: (B, #patches, D: dim of patches embedding) -> (B, D) -> (B, C_out)
self.fbs = nn.Sequential(
Rearrange('b n d -> b d n'),
Abs(),
nn.AdaptiveAvgPool1d(1),
SqueezeLast(),
nn.Linear(linear.in_features, max(linear.out_features // r, 36)),
nn.ReLU(),
nn.Linear(max(linear.out_features // r, 36), linear.out_features),
nn.ReLU()
)
nn.init.constant_(self.fbs[6].bias, 1.)
nn.init.kaiming_normal_(self.fbs[6].weight)
def forward(self, x):
if self.use_cached_channel_attention and self.cached_channel_attention is not None:
channel_attention = self.cached_channel_attention
else:
self.cached_raw_channel_attention = self.fbs(x)
self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
channel_attention = self.cached_channel_attention
raw_res = self.linear(x)
return channel_attention.unsqueeze(1) * raw_res
class ToQKV_WrappedWithFBS(Layer_WrappedWithFBS):
"""
This regards to_q/to_k/to_v as a whole (in fact it consists of multiple heads) and prunes it.
It seems different channels of different heads are pruned according to the input.
This is different from "removing some head" or "removing the same channels in each head".
"""
def __init__(self, to_qkv: nn.Linear, r):
super(ToQKV_WrappedWithFBS, self).__init__()
# self.to_qkv = to_qkv
self.to_qk = nn.Linear(to_qkv.in_features, to_qkv.out_features // 3 * 2, bias=to_qkv.bias is not None)
self.to_v = nn.Linear(to_qkv.in_features, to_qkv.out_features // 3, bias=to_qkv.bias is not None)
self.to_qk.weight.data.copy_(to_qkv.weight.data[0: to_qkv.out_features // 3 * 2])
if to_qkv.bias is not None:
self.to_qk.bias.data.copy_(to_qkv.bias.data[0: to_qkv.out_features // 3 * 2])
self.to_v.weight.data.copy_(to_qkv.weight.data[to_qkv.out_features // 3 * 2: ])
if to_qkv.bias is not None:
self.to_v.bias.data.copy_(to_qkv.bias.data[to_qkv.out_features // 3 * 2: ])
self.fbs = nn.Sequential(
Rearrange('b n d -> b d n'),
Abs(),
nn.AdaptiveAvgPool1d(1),
SqueezeLast(),
nn.Linear(to_qkv.in_features, to_qkv.out_features // 3 // r),
nn.ReLU(),
# nn.Linear(to_qkv.out_features // 3 // r, to_qkv.out_features // 3),
nn.Linear(to_qkv.out_features // 3 // r, self.to_v.out_features),
nn.ReLU()
)
nn.init.constant_(self.fbs[6].bias, 1.)
nn.init.kaiming_normal_(self.fbs[6].weight)
def forward(self, x):
if self.use_cached_channel_attention and self.cached_channel_attention is not None:
channel_attention = self.cached_channel_attention
else:
self.cached_raw_channel_attention = self.fbs(x)
# print()
# for attn in self.cached_raw_channel_attention.chunk(3, dim=1)[0: 1]:
# print(self.cached_raw_channel_attention.size(), attn.size())
# print(self.k_takes_all.k)
# print(attn[0].nonzero(as_tuple=True)[0].size(), attn[0])
self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
# for attn in self.cached_channel_attention.chunk(3, dim=1)[0: 1]:
# print(self.cached_channel_attention.size(), attn.size())
# print(self.k_takes_all.k)
# print(attn[0].nonzero(as_tuple=True)[0].size(), attn[0])
# print()
channel_attention = self.cached_channel_attention
qk = self.to_qk(x)
v = channel_attention.unsqueeze(1) * self.to_v(x)
return torch.cat([qk, v], dim=-1)
# qkv = raw_res.chunk(3, dim = -1)
# raw_v = qkv[2]
# print('raw_k, raw_v', qkv[0].sum((0, 1))[0: 10], qkv[0].sum((0, 1)).nonzero(as_tuple=True)[0].size(),
# qkv[1].sum((0, 1))[0: 10], qkv[1].sum((0, 1)).nonzero(as_tuple=True)[0].size(),)
# print('raw_v', raw_v.size(), raw_v.sum((0, 1))[0: 10], raw_v.sum((0, 1)).nonzero(as_tuple=True)[0].size())
# qkv_attn = channel_attention.chunk(3, dim=-1)
# print('attn', [attn[0][0: 10] for attn in qkv_attn])
# print(channel_attention.unsqueeze(1).size(), raw_res.size())
# print('fbs', channel_attention.size(), raw_res.size())
# return channel_attention.unsqueeze(1) * raw_res
class StaticFBS(nn.Module):
def __init__(self, static_channel_attention):
super(StaticFBS, self).__init__()
assert static_channel_attention.dim() == 2 and static_channel_attention.size(0) == 1
self.static_channel_attention = nn.Parameter(static_channel_attention, requires_grad=False) # (1, dim)
def forward(self, x):
# print('staticfbs', x, self.static_channel_attention.unsqueeze(1))
return x * self.static_channel_attention.unsqueeze(1)
class ElasticGLIPUtil(ElasticDNNUtil):
def convert_raw_dnn_to_master_dnn(self, raw_dnn: nn.Module, r: float, ignore_layers=[]):
assert len(ignore_layers) == 0, 'not supported yet'
raw_vit = deepcopy(raw_dnn)
for name, module in raw_vit.named_modules():
# if name.endswith('patch_embed'):
# set_module(module, 'proj', ProjConv_WrappedWithFBS(module.proj, r))
# if name.endswith('attn') and not name.endswith('b_attn.attn') and not name.endswith('b_attn'):
# set_module(module, 'qkv', ToQKV_WrappedWithFBS(module.qkv, r))
if name.endswith('intermediate'):
set_module(module, 'dense', Linear_WrappedWithFBS(module.dense, r))
elif name.endswith('mlp'):
set_module(module, 'fc1', Linear_WrappedWithFBS(module.fc1, r))
return raw_vit
def set_master_dnn_sparsity(self, master_dnn: nn.Module, sparsity: float):
# for name, module in master_dnn.named_modules():
# if not name.endswith('attn'):
# continue
# q_features = module.qkv.to_qk.out_features // 2
# if (q_features - int(q_features * sparsity)) % module.num_heads != 0:
# # tune sparsity to ensure #unpruned channel % num_heads == 0
# # so that the pruning seems to reduce the dim_head of each head
# tuned_sparsity = 1. - int((q_features - int(q_features * sparsity)) / module.num_heads) * module.num_heads / q_features
# logger.debug(f'tune sparsity from {sparsity:.2f} to {tuned_sparsity}')
# sparsity = tuned_sparsity
# break
return super().set_master_dnn_sparsity(master_dnn, sparsity)
def select_most_rep_sample(self, master_dnn: nn.Module, samples: torch.Tensor):
# print(samples)
sample={}
sample['images'] = [samples['images'][0]]
sample['targets'] = [samples['targets'][0]]
# return samples[0].unsqueeze(0)
# res = {k: v[0: 1] for k, v in samples.items()}
return sample
def extract_surrogate_dnn_via_samples(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False):#产生小模型的步骤
sample = self.select_most_rep_sample(master_dnn, samples)
# assert sample.dim() == 4 and sample.size(0) == 1
# print('before')
master_dnn.eval()
self.clear_cached_channel_attention_in_master_dnn(master_dnn)
with torch.no_grad():
_, o1_token_logits, o1_dot_product_logits = master_dnn(**sample)
# print('after')
boosted_vit = deepcopy(master_dnn)
def get_unpruned_indexes_from_channel_attn(channel_attn: torch.Tensor, k):
assert channel_attn.size(0) == 1, 'use A representative sample to generate channel attentions'
# print('attn_in_unpruned', channel_attn[0][0: 10])
res = channel_attn[0].nonzero(as_tuple=True)[0] # should be one-dim
# res = channel_attn[0].argsort(descending=True)[0: -int(channel_attn.size(1) * k)].sort()[0]
# g = channel_attn
# k = g.size(1) - int(g.size(1) * k)
# res = g.topk(k, 1)[1][0].sort()[0]
return res
unpruned_indexes_of_layers = {}
# for attn, ff in boosted_vit.transformer.layers:
# for block_i, block in enumerate(boosted_vit.blocks):
for layer_i, layer in enumerate(boosted_vit.model.backbone.body.layers):
for block_i, block in enumerate(layer.blocks):
# attn = block.attn
# ff = block.mlp
ff_0 = get_module(block, f'mlp.fc1')
# ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k)
ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0]
ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes])
new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
if ff_0.linear.bias is not None:
new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
set_module(block, 'mlp.fc1', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
ff_1 = get_module(block, f'mlp.fc2')
new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
if ff_1.bias is not None:
new_ff_1.bias.data.copy_(ff_1.bias.data)
set_module(block, 'mlp.fc2', new_ff_1)
unpruned_indexes_of_layers[f'model.backbone.body.layers.{layer_i}.blocks.{block_i}.mlp.fc1.0.weight'] = ff_0_unpruned_indexes
# for block_i,block in enumerate(boosted_vit.vision_model.encoder.layers):
# attn = block.self_attn
# ff = block.mlp
# ff_0 = ff.fc1
# # ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k)
# ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0]
# ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes])
# new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
# new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
# if ff_0.linear.bias is not None:
# new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
# set_module(ff, 'fc1', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
# ff_1 = ff.fc2
# new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
# new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
# if ff_1.bias is not None:
# new_ff_1.bias.data.copy_(ff_1.bias.data)
# set_module(ff, 'fc2', new_ff_1)
# unpruned_indexes_of_layers[f'vision_model.encoder.layers.{block_i}.mlp.fc1.0.weight'] = ff_0_unpruned_indexes
# for block_i, block in enumerate(boosted_vit.text_decoder.bert.encoder.layer):
# # attn = block.attn
# # ff = block.mlp
# ff_0 = get_module(block, f'intermediate.dense')
# # ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k)
# ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0]
# ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes])
# new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
# new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
# if ff_0.linear.bias is not None:
# new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
# set_module(block, 'intermediate.dense', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
# ff_1 = get_module(block, f'output.dense')
# new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
# new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
# if ff_1.bias is not None:
# new_ff_1.bias.data.copy_(ff_1.bias.data)
# set_module(block, 'output.dense', new_ff_1)
# unpruned_indexes_of_layers[f'text_decoder.bert.encoder.layer.{block_i}.intermediate.dense.0.weight'] = ff_0_unpruned_indexes
surrogate_dnn = boosted_vit
surrogate_dnn.eval()
surrogate_dnn = surrogate_dnn.to(get_model_device(master_dnn))
# logger.debug(surrogate_dnn)
with torch.no_grad():
_, o2_token_logits, o2_dot_product_logits = surrogate_dnn(**sample)
output_diff = 0.
for o1, o2 in list(zip(o1_dot_product_logits, o2_dot_product_logits)):
output_diff += ((o1 - o2) ** 2).sum()
if o1_token_logits is not None:
output_diff += ((o1_token_logits - o2_token_logits) ** 2).sum()
# assert output_diff < 1e-4, output_diff
logger.info(f'output diff of master and surrogate DNN: {output_diff}')
# logger.debug(f'example output of master/surrogate: {master_dnn_output.sum(0)[0: 10]}, {surrogate_dnn_output.sum(0)[0: 10]}')
# logger.info(f'\nonly prune mlp!!!!\n')
# logger.info(f'\nonly prune mlp!!!!\n')
if return_detail:
return boosted_vit, unpruned_indexes_of_layers
return boosted_vit
def extract_surrogate_dnn_via_samples_with_perf_test(self, master_dnn: nn.Module, samples, return_detail=False):
master_dnn_size = get_model_size(master_dnn, True)
sample = {}
sample['images'] = [samples['images'][0]]
sample['targets'] = [samples['targets'][0]]
master_dnn_latency = self._get_model_latency(master_dnn, sample, 50,
get_model_device(master_dnn), 50, False)
res = self.extract_surrogate_dnn_via_samples(master_dnn, samples, return_detail)
if not return_detail:
surrogate_dnn = res
else:
surrogate_dnn, unpruned_indexes_of_layers = res
surrogate_dnn_size = get_model_size(surrogate_dnn, True)
surrogate_dnn_latency = self._get_model_latency(master_dnn, samples, 50,
get_model_device(master_dnn), 50, False)
logger.info(f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample) -> '
f'surrogate DNN ({surrogate_dnn_size:.3f}MB, {surrogate_dnn_latency:.4f}s/sample)\n'
f'(model size: ↓ {(master_dnn_size / surrogate_dnn_size):.2f}x, '
f'latency: ↓ {(master_dnn_latency / surrogate_dnn_latency):.2f}x)')
return res
def _get_model_latency(self, model: torch.nn.Module, sample, sample_num: int,
device: str, warmup_sample_num: int, return_detail=False):
import time
model = model.to(device)
model.eval()
sample['images'] = [sample['images'][0]]
sample['targets'] = [sample['targets'][0]]
# warm up
with torch.no_grad():
for _ in range(warmup_sample_num):
model(**sample)
infer_time_list = []
if device == 'cuda' or 'cuda' in str(device):
with torch.no_grad():
for _ in range(sample_num):
s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
s.record()
model(**sample)
e.record()
torch.cuda.synchronize()
cur_model_infer_time = s.elapsed_time(e) / 1000.
infer_time_list += [cur_model_infer_time]
else:
with torch.no_grad():
for _ in range(sample_num):
start = time.time()
model(**sample)
cur_model_infer_time = time.time() - start
infer_time_list += [cur_model_infer_time]
avg_infer_time = sum(infer_time_list) / sample_num
if return_detail:
return avg_infer_time, infer_time_list
return avg_infer_time
# from typing import Any, Dict
# from schema import Schema, Or
# import schema
# from data import Scenario, MergedDataset
# from methods.base.alg import BaseAlg
# from data import build_dataloader
# from ..model import ElasticDNN_OfflineFMModel, ElasticDNN_OfflineMDModel
# from ...model.base import ElasticDNNUtil
# import torch.optim
# import tqdm
# import torch.nn.functional as F
# from torch import nn
# from utils.dl.common.env import create_tbwriter
# import os
# import random
# import numpy as np
# from copy import deepcopy
# from utils.dl.common.model import LayerActivation2, get_module
# from utils.common.log import logger
# class ElasticDNN_Det_MDPretrainingWoFBSAlg(BaseAlg):
# """
# TODO: fine-tuned FM -> init MD -> trained MD -> construct indexes (only between similar weights) and fine-tune
# """
# def get_required_models_schema(self) -> Schema:
# return Schema({
# 'fm': ElasticDNN_OfflineFMModel,
# 'md': ElasticDNN_OfflineMDModel
# })
# def get_required_hyp_schema(self) -> Schema:
# return Schema({
# 'launch_tbboard': bool,
# 'samples_size': any,
# 'generate_md_width_ratio': int,
# 'train_batch_size': int,
# 'val_batch_size': int,
# 'num_workers': int,
# 'optimizer': str,
# 'optimizer_args': dict,
# 'scheduler': str,
# 'scheduler_args': dict,
# 'num_iters': int,
# 'val_freq': int,
# 'distill_loss_weight': float
# })
# def run(self, scenario: Scenario, hyps: Dict) -> Dict[str, Any]:
# super().run(scenario, hyps)
# assert isinstance(self.models['md'], ElasticDNN_OfflineMDModel) # for auto completion
# assert isinstance(self.models['fm'], ElasticDNN_OfflineFMModel) # for auto completion
# # 1. add FBS
# device = self.models['md'].device
# if self.models['md'].models_dict['main'] == -1:
# logger.info(f'init master DNN by reducing width of an adapted foundation model (already tuned by LoRA)...')
# before_fm_model = deepcopy(self.models['fm'].models_dict['main'])
# lora_util = self.models['fm'].get_lora_util()
# sample = hyps['samples_size']
# if isinstance(sample, (tuple, list)) and isinstance(sample[0], int):
# sample = torch.rand(hyps['samples_size']).to(device)
# lora_absorbed_fm_model = lora_util.absorb_lora_and_recover_net_structure(self.models['fm'].models_dict['main'],
# sample)
# self.models['fm'].models_dict['main'] = lora_absorbed_fm_model
# master_dnn = self.models['fm'].generate_md_by_reducing_width(hyps['generate_md_width_ratio'],
# sample)
# self.models['fm'].models_dict['main'] = before_fm_model
# self.models['md'].models_dict['main'] = master_dnn
# self.models['md'].to(device)
# # 2. train (knowledge distillation, index relationship)
# offline_datasets = scenario.get_offline_datasets()
# train_dataset = MergedDataset([d['train'] for d in offline_datasets.values()])
# val_dataset = MergedDataset([d['val'] for d in offline_datasets.values()])
# train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'],
# True, None))
# val_loader = build_dataloader(val_dataset, hyps['val_batch_size'], hyps['num_workers'],
# False, False)
# # logger.info(f'FM acc: {self.models["fm"].get_accuracy(val_loader):.4f}')
# # 2.1 train whole master DNN (knowledge distillation)
# for p in master_dnn.parameters():
# p.requires_grad = True
# self.models['md'].to_train_mode()
# optimizer = torch.optim.__dict__[hyps['optimizer']]([
# {'params': self.models['md'].models_dict['main'].parameters(), **hyps['optimizer_args']}
# ])
# scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args'])
# tb_writer = create_tbwriter(os.path.join(self.res_save_dir, 'tb_log'), launch_tbboard=hyps['launch_tbboard'])
# pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True)
# best_avg_val_acc = 0.
# md_output_hook = None
# for iter_index in pbar:
# self.models['md'].to_train_mode()
# self.models['fm'].to_eval_mode()
# # rand_sparsity = random.random() * (hyps['max_sparsity'] - hyps['min_sparsity']) + hyps['min_sparsity']
# # elastic_dnn_util.set_master_dnn_sparsity(self.models['md'].models_dict['main'], rand_sparsity)
# if md_output_hook is None:
# md_output_hook = self.models['md'].get_feature_hook()
# fm_output_hook = self.models['fm'].get_feature_hook()
# x, y = next(train_loader)
# if isinstance(x, dict):
# for k, v in x.items():
# if isinstance(v, torch.Tensor):
# x[k] = v.to(device)
# y = y.to(device)
# else:
# x, y = x.to(device), y.to(device)
# with torch.no_grad():
# fm_output = self.models['fm'].infer(x)
# task_loss = self.models['md'].forward_to_get_task_loss(x, y)
# md_output = md_output_hook.output
# fm_output = fm_output_hook.output
# distill_loss = hyps['distill_loss_weight'] * self.models['md'].get_distill_loss(md_output, fm_output)
# total_loss = task_loss + distill_loss
# optimizer.zero_grad()
# total_loss.backward()
# optimizer.step()
# scheduler.step()
# if (iter_index + 1) % hyps['val_freq'] == 0:
# # elastic_dnn_util.clear_cached_channel_attention_in_master_dnn(self.models['md'].models_dict['main'])
# md_output_hook.remove()
# md_output_hook = None
# fm_output_hook.remove()
# fm_output_hook = None
# cur_md = self.models['md'].models_dict['main']
# md_for_test = deepcopy(self.models['md'].models_dict['main'])
# val_acc = 0.
# self.models['md'].models_dict['main'] = md_for_test
# self.models['md'].to_eval_mode()
# val_acc = self.models['md'].get_accuracy(val_loader)
# self.models['md'].models_dict['main'] = cur_md
# self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_last.pt'))
# self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_last.pt'))
# if val_acc > best_avg_val_acc:
# best_avg_val_acc = val_acc
# self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_best.pt'))
# self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_best.pt'))
# tb_writer.add_scalars(f'losses', dict(task=task_loss, distill=distill_loss, total=total_loss), iter_index)
# pbar.set_description(f'loss: {total_loss:.6f}')
# if (iter_index + 1) >= hyps['val_freq']:
# tb_writer.add_scalar(f'accs/val_acc', val_acc, iter_index)
# pbar.set_description(f'loss: {total_loss:.6f}, val_acc: {val_acc:.4f}')
# if __name__ == '__main__':
# model = glip_model('new_impl/cv/glip/object_detection/pretrained_model/glip_Swin_T_O365_GoldG.yaml','new_impl/cv/glip/object_detection/pretrained_model/glip_tiny_model_o365_goldg_cc_sbu.pth').cuda()
# model.eval()
# # print(model)
# # exit()
# # config = CLIPConfig.from_pretrained('openai/clip-vit-base-patch16')
# # print(config)
# # # test 1: single image inference
# from PIL import Image, ImageDraw
# import requests
# import numpy as np
# ori_image = Image.open('new_impl/cv/glip/object_detection/9472793441_b7822c00de_z.jpg').convert("RGB")
# image = [np.asarray(ori_image)[:, :, [2, 1, 0]]]
# text = 'sofa . remote . dog . person . car . sky . plane .'
# target = torch.Tensor()
# o = model(image, text)
# o = model._post_process(o[0])
# print(o)
# bboxes = o.bbox.cpu()
# a = ImageDraw.ImageDraw(ori_image)
# for box in bboxes:
# box = box.int()
# a.rectangle(((box[0], box[1]), (box[2], box[3])), fill=None, outline='red', width=2)
# ori_image.save('test.jpg')
# # print(o.logits_per_image.softmax(dim=1))
# # o = model(image, torch.load('dnns/clip/test_input_embed.pth'), False)
# # # print(o)
# # print(o.logits_per_image.softmax(dim=1))
# # exit()
# # test 2: normal training using clip loss (batch)
# from data import get_dataset, build_dataloader
# from torchvision.transforms import Compose, ToTensor, Resize
# dataset = get_dataset('Caltech256', '/data/zql/datasets/Caltech-256/data/caltech256/256_ObjectCategories/', 'train', transform=Compose([
# Resize((32, 32)), ToTensor()
# ]))
# dataloader = build_dataloader(dataset, 8, 0, True, None)
# from PIL import Image
# import requests
# images, labels = next(iter(dataloader))
# # torch.save(images, 'dnns/clip/test_image.pth')
# classes = dataset.classes
# text = [f"a photo of a {classes[i]}" for i in labels] # should be ground truth
# print(text)
# print(images.size())
# o = model(images, text, True)
# print(o)
# print(o.logits_per_image.softmax(dim=1))
# # o = model(image, torch.load('dnns/clip/test_input_embed.pth'), False)
# # # print(o)
# # print(o.logits_per_image.softmax(dim=1)) |