File size: 15,983 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
from copy import deepcopy
from typing import Optional, Union
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import tqdm
from utils.dl.common.model import get_model_device, get_model_size, set_module, get_module
from .base import Abs, KTakesAll, ElasticDNNUtil, Layer_WrappedWithFBS
from utils.common.log import logger
class SqueezeLast(nn.Module):
def __init__(self):
super(SqueezeLast, self).__init__()
def forward(self, x):
return x.squeeze(-1)
class ProjConv_WrappedWithFBS(Layer_WrappedWithFBS):
def __init__(self, proj: nn.Conv2d, r):
super(ProjConv_WrappedWithFBS, self).__init__()
self.proj = proj
# for conv: (B, C_in, H, W) -> (B, C_in) -> (B, C_out)
# for mlp in ViT: (B, #patches, D: dim of patches embedding) -> (B, D) -> (B, C_out)
self.fbs = nn.Sequential(
Abs(),
nn.AdaptiveAvgPool1d(1),
SqueezeLast(),
nn.Linear(proj.in_channels, proj.out_channels // r),
nn.ReLU(),
nn.Linear(proj.out_channels // r, proj.out_channels),
nn.ReLU()
)
nn.init.constant_(self.fbs[6].bias, 1.)
nn.init.kaiming_normal_(self.fbs[6].weight)
def forward(self, x):
if self.use_cached_channel_attention and self.cached_channel_attention is not None:
channel_attention = self.cached_channel_attention
else:
self.cached_raw_channel_attention = self.fbs(x)
self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
channel_attention = self.cached_channel_attention
raw_res = self.proj(x)
return channel_attention.unsqueeze(1) * raw_res # TODO:
class Linear_WrappedWithFBS(Layer_WrappedWithFBS):
def __init__(self, linear: nn.Linear, r):
super(Linear_WrappedWithFBS, self).__init__()
self.linear = linear
# for conv: (B, C_in, H, W) -> (B, C_in) -> (B, C_out)
# for mlp in ViT: (B, #patches, D: dim of patches embedding) -> (B, D) -> (B, C_out)
self.fbs = nn.Sequential(
Rearrange('b n d -> b d n'),
Abs(),
nn.AdaptiveAvgPool1d(1),
SqueezeLast(),
nn.Linear(linear.in_features, linear.out_features // r),
nn.ReLU(),
nn.Linear(linear.out_features // r, linear.out_features),
nn.ReLU()
)
nn.init.constant_(self.fbs[6].bias, 1.)
nn.init.kaiming_normal_(self.fbs[6].weight)
def forward(self, x):
if self.use_cached_channel_attention and self.cached_channel_attention is not None:
channel_attention = self.cached_channel_attention
else:
self.cached_raw_channel_attention = self.fbs(x)
self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
channel_attention = self.cached_channel_attention
raw_res = self.linear(x)
return channel_attention.unsqueeze(1) * raw_res
class ToQKV_WrappedWithFBS(Layer_WrappedWithFBS):
"""
This regards to_q/to_k/to_v as a whole (in fact it consists of multiple heads) and prunes it.
It seems different channels of different heads are pruned according to the input.
This is different from "removing some head" or "removing the same channels in each head".
"""
def __init__(self, to_qkv: nn.Linear, r):
super(ToQKV_WrappedWithFBS, self).__init__()
# self.to_qkv = to_qkv
self.to_qk = nn.Linear(to_qkv.in_features, to_qkv.out_features // 3 * 2, bias=to_qkv.bias is not None)
self.to_v = nn.Linear(to_qkv.in_features, to_qkv.out_features // 3, bias=to_qkv.bias is not None)
self.to_qk.weight.data.copy_(to_qkv.weight.data[0: to_qkv.out_features // 3 * 2])
if to_qkv.bias is not None:
self.to_qk.bias.data.copy_(to_qkv.bias.data[0: to_qkv.out_features // 3 * 2])
self.to_v.weight.data.copy_(to_qkv.weight.data[to_qkv.out_features // 3 * 2: ])
if to_qkv.bias is not None:
self.to_v.bias.data.copy_(to_qkv.bias.data[to_qkv.out_features // 3 * 2: ])
self.fbs = nn.Sequential(
Rearrange('b n d -> b d n'),
Abs(),
nn.AdaptiveAvgPool1d(1),
SqueezeLast(),
nn.Linear(to_qkv.in_features, to_qkv.out_features // 3 // r),
nn.ReLU(),
# nn.Linear(to_qkv.out_features // 3 // r, to_qkv.out_features // 3),
nn.Linear(to_qkv.out_features // 3 // r, self.to_v.out_features),
nn.ReLU()
)
nn.init.constant_(self.fbs[6].bias, 1.)
nn.init.kaiming_normal_(self.fbs[6].weight)
def forward(self, x):
if self.use_cached_channel_attention and self.cached_channel_attention is not None:
channel_attention = self.cached_channel_attention
else:
self.cached_raw_channel_attention = self.fbs(x)
# print()
# for attn in self.cached_raw_channel_attention.chunk(3, dim=1)[0: 1]:
# print(self.cached_raw_channel_attention.size(), attn.size())
# print(self.k_takes_all.k)
# print(attn[0].nonzero(as_tuple=True)[0].size(), attn[0])
self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
# for attn in self.cached_channel_attention.chunk(3, dim=1)[0: 1]:
# print(self.cached_channel_attention.size(), attn.size())
# print(self.k_takes_all.k)
# print(attn[0].nonzero(as_tuple=True)[0].size(), attn[0])
# print()
channel_attention = self.cached_channel_attention
qk = self.to_qk(x)
v = channel_attention.unsqueeze(1) * self.to_v(x)
return torch.cat([qk, v], dim=-1)
# qkv = raw_res.chunk(3, dim = -1)
# raw_v = qkv[2]
# print('raw_k, raw_v', qkv[0].sum((0, 1))[0: 10], qkv[0].sum((0, 1)).nonzero(as_tuple=True)[0].size(),
# qkv[1].sum((0, 1))[0: 10], qkv[1].sum((0, 1)).nonzero(as_tuple=True)[0].size(),)
# print('raw_v', raw_v.size(), raw_v.sum((0, 1))[0: 10], raw_v.sum((0, 1)).nonzero(as_tuple=True)[0].size())
# qkv_attn = channel_attention.chunk(3, dim=-1)
# print('attn', [attn[0][0: 10] for attn in qkv_attn])
# print(channel_attention.unsqueeze(1).size(), raw_res.size())
# print('fbs', channel_attention.size(), raw_res.size())
# return channel_attention.unsqueeze(1) * raw_res
class StaticFBS(nn.Module):
def __init__(self, static_channel_attention):
super(StaticFBS, self).__init__()
assert static_channel_attention.dim() == 2 and static_channel_attention.size(0) == 1
self.static_channel_attention = nn.Parameter(static_channel_attention, requires_grad=False) # (1, dim)
def forward(self, x):
# print('staticfbs', x, self.static_channel_attention.unsqueeze(1))
return x * self.static_channel_attention.unsqueeze(1)
class ElasticViltUtil(ElasticDNNUtil):
def convert_raw_dnn_to_master_dnn(self, raw_dnn: nn.Module, r: float, ignore_layers=[]):
assert len(ignore_layers) == 0, 'not supported yet'
raw_vit = deepcopy(raw_dnn)
# set_module(module, 'patch_embed.proj', ProjConv_WrappedWithFBS(module.patch_embed.proj, r))
for name, module in raw_vit.named_modules():
# if name.endswith('attn'):
# set_module(module, 'qkv', ToQKV_WrappedWithFBS(module.qkv, r))
if name.endswith('intermediate'):
set_module(module, 'dense', Linear_WrappedWithFBS(module.dense, r))
return raw_vit
def set_master_dnn_sparsity(self, master_dnn: nn.Module, sparsity: float):
# for name, module in master_dnn.named_modules():
# if not name.endswith('attn'):
# continue
# q_features = module.qkv.to_qk.out_features // 2
# if (q_features - int(q_features * sparsity)) % module.num_heads != 0:
# # tune sparsity to ensure #unpruned channel % num_heads == 0
# # so that the pruning seems to reduce the dim_head of each head
# tuned_sparsity = 1. - int((q_features - int(q_features * sparsity)) / module.num_heads) * module.num_heads / q_features
# logger.debug(f'tune sparsity from {sparsity:.2f} to {tuned_sparsity}')
# sparsity = tuned_sparsity
# break
return super().set_master_dnn_sparsity(master_dnn, sparsity)
def select_most_rep_sample(self, master_dnn: nn.Module, samples: torch.Tensor):
# print(samples)
# return samples[0].unsqueeze(0)
res = {k: v[0: 1] for k, v in samples.items()}
return res
def extract_surrogate_dnn_via_samples(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False):
sample = self.select_most_rep_sample(master_dnn, samples)
# assert sample.dim() == 4 and sample.size(0) == 1
# print('before')
master_dnn.eval()
self.clear_cached_channel_attention_in_master_dnn(master_dnn)
with torch.no_grad():
master_dnn_output = master_dnn(**sample)
# print('after')
boosted_vit = deepcopy(master_dnn)
def get_unpruned_indexes_from_channel_attn(channel_attn: torch.Tensor, k):
assert channel_attn.size(0) == 1, 'use A representative sample to generate channel attentions'
# print('attn_in_unpruned', channel_attn[0][0: 10])
res = channel_attn[0].nonzero(as_tuple=True)[0] # should be one-dim
# res = channel_attn[0].argsort(descending=True)[0: -int(channel_attn.size(1) * k)].sort()[0]
# g = channel_attn
# k = g.size(1) - int(g.size(1) * k)
# res = g.topk(k, 1)[1][0].sort()[0]
return res
unpruned_indexes_of_layers = {}
# for attn, ff in boosted_vit.transformer.layers:
# for block_i, block in enumerate(boosted_vit.blocks):
for block_i, block in enumerate(boosted_vit.vilt.encoder.layer):
# attn = block.attn
# ff = block.mlp
ff_0 = get_module(block, f'intermediate.dense')
# ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k)
ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0]
ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes])
new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
if ff_0.linear.bias is not None:
new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
set_module(block, 'intermediate.dense', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
ff_1 = get_module(block, f'output.dense')
new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
if ff_1.bias is not None:
new_ff_1.bias.data.copy_(ff_1.bias.data)
set_module(block, 'output.dense', new_ff_1)
unpruned_indexes_of_layers[f'vilt.encoder.layer.{block_i}.intermediate.dense.0.weight'] = ff_0_unpruned_indexes
surrogate_dnn = boosted_vit
surrogate_dnn.eval()
surrogate_dnn = surrogate_dnn.to(get_model_device(master_dnn))
# logger.debug(surrogate_dnn)
with torch.no_grad():
surrogate_dnn_output = surrogate_dnn(**sample)
output_diff = ((surrogate_dnn_output.logits - master_dnn_output.logits) ** 2).sum()
# assert output_diff < 1e-4, output_diff
logger.info(f'output diff of master and surrogate DNN: {output_diff}')
# logger.debug(f'example output of master/surrogate: {master_dnn_output.sum(0)[0: 10]}, {surrogate_dnn_output.sum(0)[0: 10]}')
# logger.info(f'\nonly prune mlp!!!!\n')
# logger.info(f'\nonly prune mlp!!!!\n')
if return_detail:
return boosted_vit, unpruned_indexes_of_layers
return boosted_vit
def extract_surrogate_dnn_via_samples_with_perf_test(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False):
master_dnn_size = get_model_size(master_dnn, True)
master_dnn_latency = self._get_model_latency(master_dnn, samples, 50,
get_model_device(master_dnn), 50, False)
res = self.extract_surrogate_dnn_via_samples(master_dnn, samples, return_detail)
if not return_detail:
surrogate_dnn = res
else:
surrogate_dnn, unpruned_indexes_of_layers = res
surrogate_dnn_size = get_model_size(surrogate_dnn, True)
surrogate_dnn_latency = self._get_model_latency(master_dnn, samples, 50,
get_model_device(master_dnn), 50, False)
logger.info(f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample) -> '
f'surrogate DNN ({surrogate_dnn_size:.3f}MB, {surrogate_dnn_latency:.4f}s/sample)\n'
f'(model size: ↓ {(master_dnn_size / surrogate_dnn_size):.2f}x, '
f'latency: ↓ {(master_dnn_latency / surrogate_dnn_latency):.2f}x)')
return res
def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int,
device: str, warmup_sample_num: int, return_detail=False):
import time
if isinstance(model_input_size, tuple):
dummy_input = torch.rand(model_input_size).to(device)
else:
dummy_input = model_input_size
model = model.to(device)
model.eval()
# warm up
with torch.no_grad():
for _ in range(warmup_sample_num):
model(**dummy_input)
infer_time_list = []
if device == 'cuda' or 'cuda' in str(device):
with torch.no_grad():
for _ in range(sample_num):
s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
s.record()
model(**dummy_input)
e.record()
torch.cuda.synchronize()
cur_model_infer_time = s.elapsed_time(e) / 1000.
infer_time_list += [cur_model_infer_time]
else:
with torch.no_grad():
for _ in range(sample_num):
start = time.time()
model(**dummy_input)
cur_model_infer_time = time.time() - start
infer_time_list += [cur_model_infer_time]
avg_infer_time = sum(infer_time_list) / sample_num
if return_detail:
return avg_infer_time, infer_time_list
return avg_infer_time |