File size: 13,316 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

import torch
from torch import nn 
from copy import deepcopy

from .base import FM_to_MD_Util
from utils.common.log import logger
from utils.dl.common.model import set_module, get_module, get_super_module
from utils.dl.common.model import get_model_device, get_model_latency, get_model_size
from utils.common.log import logger

from transformers.models.bert.modeling_bert import BertSelfAttention
from transformers import BertConfig

from typing import Optional, Tuple
import math

class BertSelfAttentionPrunable(BertSelfAttention):
    def __init__(self):
        config = BertConfig.from_pretrained('bert-base-multilingual-cased')
        super(BertSelfAttentionPrunable, self).__init__(config)
    
    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)
    
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
            attention_mask = encoder_attention_mask
        elif is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
        else:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))

        query_layer = self.transpose_for_scores(mixed_query_layer)

        use_cache = past_key_value is not None
        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_layer, value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            query_length, key_length = query_layer.shape[2], key_layer.shape[2]
            if use_cache:
                position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
                    -1, 1
                )
            else:
                position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
            position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
            distance = position_ids_l - position_ids_r

            positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.query.out_features,) # NOTE: modified
        context_layer = context_layer.view(new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        if self.is_decoder:
            outputs = outputs + (past_key_value,)
        return outputs

    @staticmethod
    def init_from_exist_self_attn(attn: BertSelfAttention):
        # print(attn)
        
        res = BertSelfAttentionPrunable()
        
        for attr in dir(attn):
            # if str(attr) in ['transpose_for_scores'] or str(attr).startswith('_'):
            #     continue
            # if isinstance(getattr(attn, attr), nn.Module):
                # print(attr)
                
            if isinstance(getattr(attn, attr), nn.Module):
                try:
                    # print(attr, 'ok')
                    setattr(res, attr, getattr(attn, attr))
                    
                except Exception as e:
                    print(attr, str(e))
        
        
        
        return res

class FM_to_MD_Bert_Util(FM_to_MD_Util):
    def init_md_from_fm_by_reducing_width(self, fm: nn.Module, reducing_width_ratio: int) -> nn.Module:
        fm_vit = deepcopy(fm)
        
        for block in fm_vit.bert.encoder.layer:
            set_module(block, 'attention.self', BertSelfAttentionPrunable.init_from_exist_self_attn(block.attention.self))
        
        def _f(n):
            return int(n // reducing_width_ratio)
        
        # def _rand_indexes(n):
            # return torch.randperm(n)[0: int(n // reducing_width_ratio)]
            
        def l1_max_indexes(p: torch.Tensor, dim=0):
            assert dim in [0, 1]
            assert p.dim() in [1, 2, 4]
            
            if dim == 1:
                p = p.T
            
            p_norm = p.abs().contiguous().view(p.size(0), -1).sum(dim=1)
            n = p.size(0)
            return p_norm.argsort(descending=True)[0: int(n // reducing_width_ratio)].sort()[0]
        
        for block_i, block in enumerate(fm_vit.bert.encoder.layer):
            for k in ['query', 'key', 'value']:
                qkv = get_module(block, f'attention.self.{k}')

                new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), 
                                    qkv.bias is not None, qkv.weight.device)
                indexes = l1_max_indexes(qkv.weight.data, 0)
                
                new_qkv.weight.data.copy_(qkv.weight.data[indexes])
                if qkv.bias is not None:
                    new_qkv.bias.data.copy_(qkv.bias.data[indexes])
                set_module(block, f'attention.self.{k}', new_qkv)
            
            proj = get_module(block, f'attention.output.dense')
            new_proj = nn.Linear(_f(proj.in_features), proj.out_features, 
                                proj.bias is not None, proj.weight.device)
            new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
            if proj.bias is not None:
                new_proj.bias.data.copy_(proj.bias.data)
            set_module(block, f'attention.output.dense', new_proj)
            
            fc1 = get_module(block, f'intermediate.dense')
            new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features), 
                                fc1.bias is not None, fc1.weight.device)
            indexes = l1_max_indexes(fc1.weight.data, 0)
            new_fc1.weight.data.copy_(fc1.weight.data[indexes])
            if fc1.bias is not None:
                new_fc1.bias.data.copy_(fc1.bias.data[indexes])
            set_module(block, f'intermediate.dense', new_fc1)

            fc2 = get_module(block, f'output.dense')
            new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features, 
                                fc2.bias is not None, fc2.weight.device)
            new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)])
            if fc2.bias is not None:
                new_fc2.bias.data.copy_(fc2.bias.data)
            set_module(block, f'output.dense', new_fc2)
            
        return fm_vit
    
    def init_md_from_fm_by_reducing_width_with_perf_test(self, fm: nn.Module, reducing_width_ratio: int,
                                                         samples: torch.Tensor) -> nn.Module:
        fm_size = get_model_size(fm, True)
        fm_latency = self._get_model_latency(fm, samples, 20, 
                                               get_model_device(fm), 20, False)
        
        master_dnn = self.init_md_from_fm_by_reducing_width(fm, reducing_width_ratio)
        master_dnn_size = get_model_size(master_dnn, True)
        logger.debug(f'inited master DNN: {master_dnn}')
        master_dnn_latency = self._get_model_latency(master_dnn, samples, 20, 
                                               get_model_device(master_dnn), 20, False)

        logger.info(f'init master DNN (w/o FBS yet) by reducing foundation model\'s width (by {reducing_width_ratio:d}x)')
        logger.info(f'foundation model ({fm_size:.3f}MB, {fm_latency:.4f}s/sample) -> '
                    f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample)\n'
                    f'(model size: ↓ {(fm_size / master_dnn_size):.2f}x, '
                    f'latency: ↓ {(fm_latency / master_dnn_latency):.2f}x)')
        
        return master_dnn
    
    def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int, 
                           device: str, warmup_sample_num: int, return_detail=False):
        import time
        
        if isinstance(model_input_size, tuple):
            dummy_input = torch.rand(model_input_size).to(device)
        else:
            dummy_input = model_input_size
            
        model = model.to(device)
        model.eval()
        
        # warm up
        with torch.no_grad():
            for _ in range(warmup_sample_num):
                model(**dummy_input)
                
        infer_time_list = []
                
        if device == 'cuda' or 'cuda' in str(device):
            with torch.no_grad():
                for _ in range(sample_num):
                    s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
                    s.record()
                    model(**dummy_input)
                    e.record()
                    torch.cuda.synchronize()
                    cur_model_infer_time = s.elapsed_time(e) / 1000.
                    infer_time_list += [cur_model_infer_time]

        else:
            with torch.no_grad():
                for _ in range(sample_num):
                    start = time.time()
                    model(**dummy_input)
                    cur_model_infer_time = time.time() - start
                    infer_time_list += [cur_model_infer_time]
                    
        avg_infer_time = sum(infer_time_list) / sample_num

        if return_detail:
            return avg_infer_time, infer_time_list
        return avg_infer_time