File size: 8,653 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from typing import Any, Dict
from schema import Schema, Or
import schema
from data import Scenario, MergedDataset
from methods.base.alg import BaseAlg
from data import build_dataloader
from ..model import ElasticDNN_OfflineFMModel, ElasticDNN_OfflineMDModel
from ...model.base import ElasticDNNUtil
import torch.optim
import tqdm
import torch.nn.functional as F
from torch import nn
from utils.dl.common.env import create_tbwriter
import os
import random
import numpy as np
from copy import deepcopy
from utils.dl.common.model import LayerActivation, get_module
from utils.common.log import logger


class ElasticDNN_MDPretrainingWFBSAlg(BaseAlg):
    """
    TODO: fine-tuned FM -> init MD -> trained MD -> construct indexes (only between similar weights) and fine-tune
    """
    def get_required_models_schema(self) -> Schema:
        return Schema({
            'fm': ElasticDNN_OfflineFMModel,
            'md': ElasticDNN_OfflineMDModel
        })
        
    def get_required_hyp_schema(self) -> Schema:
        return Schema({
            'launch_tbboard': bool,
            
            'samples_size': (int, int, int, int),
            'generate_md_width_ratio': int,
            
            'FBS_r': int,
            'FBS_ignore_layers': [str],
            
            'train_batch_size': int,
            'val_batch_size': int,
            'num_workers': int,            
            'optimizer': str,
            'optimizer_args': dict,
            'scheduler': str,
            'scheduler_args': dict,
            'num_iters': int,
            'val_freq': int,
            'max_sparsity': float,
            'min_sparsity': float,
            'l1_reg_loss_weight': float,
            'val_num_sparsities': int,
            
            'bn_cal_num_iters': int
        })
        
    def bn_cal(self, model: nn.Module, train_loader, num_iters, device):
        has_bn = False
        for n, m in model.named_modules():
            if isinstance(m, nn.BatchNorm2d):
                has_bn = True
                break
        
        if not has_bn:
            return {}
        
        def bn_calibration_init(m):
            """ calculating post-statistics of batch normalization """
            if getattr(m, 'track_running_stats', False):
                # reset all values for post-statistics
                m.reset_running_stats()
                # set bn in training mode to update post-statistics
                m.training = True
                
        with torch.no_grad():
            model.eval()
            model.apply(bn_calibration_init)
            for _ in range(num_iters):
                x, _ = next(train_loader)
                model(x.to(device))
            model.eval()
            
        bn_stats = {}
        for n, m in model.named_modules():
            if isinstance(m, nn.BatchNorm2d):
                bn_stats[n] = m
        return bn_stats
        
    def run(self, scenario: Scenario, hyps: Dict) -> Dict[str, Any]:
        super().run(scenario, hyps)
        
        assert isinstance(self.models['md'], ElasticDNN_OfflineMDModel) # for auto completion
        assert isinstance(self.models['fm'], ElasticDNN_OfflineFMModel) # for auto completion
        
        # 1. add FBS
        device = self.models['md'].device
        
        # 2. train (knowledge distillation, index relationship)
        offline_datasets = scenario.get_offline_datasets()
        train_dataset = MergedDataset([d['train'] for d in offline_datasets.values()])
        val_dataset = MergedDataset([d['val'] for d in offline_datasets.values()])
        train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'],
                                        True, None))
        val_loader = build_dataloader(val_dataset, hyps['val_batch_size'], hyps['num_workers'],
                                      False, False)
        
        logger.info(f'master DNN acc before inserting FBS: {self.models["md"].get_accuracy(val_loader):.4f}')
        
        master_dnn = self.models['md'].models_dict['main']
        elastic_dnn_util = self.models['fm'].get_elastic_dnn_util()
        master_dnn = elastic_dnn_util.convert_raw_dnn_to_master_dnn_with_perf_test(master_dnn, hyps['FBS_r'], hyps['FBS_ignore_layers']).to(device)
        self.models['md'].models_dict['main'] = master_dnn
        
        # 2.1 train whole master DNN (knowledge distillation)
        for p in master_dnn.parameters():
            p.requires_grad = True
        self.models['md'].to_train_mode()
        
        optimizer = torch.optim.__dict__[hyps['optimizer']]([
            {'params': self.models['md'].models_dict['main'].parameters(), **hyps['optimizer_args']}
        ])
        scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args'])
        tb_writer = create_tbwriter(os.path.join(self.res_save_dir, 'tb_log'), launch_tbboard=hyps['launch_tbboard'])
        pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True)
        best_avg_val_acc = 0.
        
        for iter_index in pbar:
            self.models['md'].to_train_mode()
            self.models['fm'].to_eval_mode()
            
            rand_sparsity = random.random() * (hyps['max_sparsity'] - hyps['min_sparsity']) + hyps['min_sparsity']
            elastic_dnn_util.set_master_dnn_sparsity(self.models['md'].models_dict['main'], rand_sparsity)
            
            x, y = next(train_loader)
            x, y = x.to(device), y.to(device)
            
            task_loss = self.models['md'].forward_to_get_task_loss(x, y)
            l1_reg_loss = hyps['l1_reg_loss_weight'] * elastic_dnn_util.get_accu_l1_reg_of_raw_channel_attention_in_master_dnn(master_dnn)
            total_loss = task_loss + l1_reg_loss
            
            optimizer.zero_grad()
            total_loss.backward()
            optimizer.step()
            scheduler.step()
            
            if (iter_index + 1) % hyps['val_freq'] == 0:
                
                elastic_dnn_util.clear_cached_channel_attention_in_master_dnn(self.models['md'].models_dict['main'])
                
                cur_md = self.models['md'].models_dict['main']
                md_for_test = deepcopy(self.models['md'].models_dict['main'])
                val_accs = {}
                avg_val_acc = 0.
                bn_stats = {}
                
                for val_sparsity in np.linspace(hyps['min_sparsity'], hyps['max_sparsity'], num=hyps['val_num_sparsities']):
                    elastic_dnn_util.set_master_dnn_sparsity(md_for_test, val_sparsity)
                    bn_stats[f'{val_sparsity:.4f}'] = self.bn_cal(md_for_test, train_loader, hyps['bn_cal_num_iters'], device)
                    
                    # generate seperate surrogate DNN
                    test_sd = elastic_dnn_util.extract_surrogate_dnn_via_samples_with_perf_test(md_for_test, x)
                    
                    self.models['md'].models_dict['main'] = test_sd
                    self.models['md'].to_eval_mode()
                    val_acc = self.models['md'].get_accuracy(val_loader)
                    
                    val_accs[f'{val_sparsity:.4f}'] = val_acc
                    avg_val_acc += val_acc
                    
                avg_val_acc /= hyps['val_num_sparsities']
                
                self.models['md'].models_dict['main'] = cur_md
                self.models['md'].models_dict['bn_stats'] = bn_stats
                
                self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_last.pt'))
                self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_last.pt'))
                
                if avg_val_acc > best_avg_val_acc:
                    best_avg_val_acc = avg_val_acc
                    self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_best.pt'))
                    self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_best.pt'))
                
            tb_writer.add_scalars(f'losses', dict(task=task_loss, l1_reg=l1_reg_loss, total=total_loss), iter_index)
            pbar.set_description(f'loss: {total_loss:.6f}')
            if (iter_index + 1) >= hyps['val_freq']:
                tb_writer.add_scalars(f'accs/val_accs', val_accs, iter_index)
                tb_writer.add_scalar(f'accs/avg_val_acc', avg_val_acc, iter_index)
                pbar.set_description(f'loss: {total_loss:.6f}, task_loss: {task_loss:.6f}, '
                                     f'l1_loss: {l1_reg_loss:.6f}, avg_val_acc: {avg_val_acc:.4f}')