File size: 17,722 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# from typing import Any, Dict
# from schema import Schema, Or
# import schema
# from data import Scenario, MergedDataset
# from methods.base.alg import BaseAlg
# from data import build_dataloader
# from ..model import ElasticDNN_OfflineFMModel, ElasticDNN_OfflineMDModel
# from ...model.base import ElasticDNNUtil
# import torch.optim
# import tqdm
# import torch.nn.functional as F
# from torch import nn
# from utils.dl.common.env import create_tbwriter
# import os
# import random
# import numpy as np
# from copy import deepcopy
# from utils.dl.common.model import LayerActivation2, get_module
# from utils.common.log import logger


# class ElasticDNN_MDPretrainingWoFBSAlg(BaseAlg):
#     """
#     TODO: fine-tuned FM -> init MD -> trained MD -> construct indexes (only between similar weights) and fine-tune
#     """
#     def get_required_models_schema(self) -> Schema:
#         return Schema({
#             'fm': ElasticDNN_OfflineFMModel,
#             'md': ElasticDNN_OfflineMDModel
#         })
        
#     def get_required_hyp_schema(self) -> Schema:
#         return Schema({
#             'launch_tbboard': bool,
            
#             'samples_size': object,
#             'generate_md_width_ratio': int,
            
#             'train_batch_size': int,
#             'val_batch_size': int,
#             'num_workers': int,            
#             'optimizer': str,
#             'optimizer_args': dict,
#             'scheduler': str,
#             'scheduler_args': dict,
#             'num_iters': int,
#             'val_freq': int,
#             'distill_loss_weight': float
#         })

#     def run(self, scenario: Scenario, hyps: Dict) -> Dict[str, Any]:
#         super().run(scenario, hyps)
        
#         assert isinstance(self.models['md'], ElasticDNN_OfflineMDModel) # for auto completion
#         assert isinstance(self.models['fm'], ElasticDNN_OfflineFMModel) # for auto completion
        
#         # 1. add FBS
#         device = self.models['md'].device
        
#         if self.models['md'].models_dict['main'] == -1:
#             logger.info(f'init master DNN by reducing width of an adapted foundation model (already tuned by LoRA)...')
            
#             before_fm_model = deepcopy(self.models['fm'].models_dict['main'])
#             lora_util = self.models['fm'].get_lora_util()
            
#             sample = hyps['samples_size']
#             if isinstance(sample, (tuple, list)) and isinstance(sample[0], int):
#                 sample = torch.rand(hyps['samples_size']).to(device)
                
#             lora_absorbed_fm_model = lora_util.absorb_lora_and_recover_net_structure(self.models['fm'].models_dict['main'], 
#                                                                                      sample)
#             self.models['fm'].models_dict['main'] = lora_absorbed_fm_model
#             master_dnn = self.models['fm'].generate_md_by_reducing_width(hyps['generate_md_width_ratio'], 
#                                                                          sample)
#             self.models['fm'].models_dict['main'] = before_fm_model
            
#             self.models['md'].models_dict['main'] = master_dnn
#             self.models['md'].to(device)
            
        
        
#         # 2. train (knowledge distillation, index relationship)
#         offline_datasets = scenario.get_offline_datasets()
#         train_dataset = MergedDataset([d['train'] for d in offline_datasets.values()])
#         val_dataset = MergedDataset([d['val'] for d in offline_datasets.values()])
#         train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'],
#                                         True, None))
#         val_loader = build_dataloader(val_dataset, hyps['val_batch_size'], hyps['num_workers'],
#                                       False, False)
        
#         # val_acc = self.models['md'].get_accuracy(val_loader)
#         # print(val_acc)
#         # exit()
        
#         # 2.1 train whole master DNN (knowledge distillation)
#         self.models['md'].to_train_mode()
#         for p in master_dnn.parameters():
#             p.requires_grad = True
        
#         if hasattr(self.models['md'], 'get_trained_params'):
#             trained_p = self.models['md'].get_trained_params()
#             logger.info(f'use custom trained parameters!!')
#         else:
#             trained_p = self.models['md'].models_dict['main'].parameters()
#         for p in trained_p:
#             p.requires_grad = True
#         optimizer = torch.optim.__dict__[hyps['optimizer']]([
#             {'params': trained_p, **hyps['optimizer_args']}
#         ])
#         scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args'])
#         tb_writer = create_tbwriter(os.path.join(self.res_save_dir, 'tb_log'), launch_tbboard=hyps['launch_tbboard'])
#         pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True)
#         best_avg_val_acc = 0.
        
#         md_output_hook = None
        
#         for iter_index in pbar:
#             self.models['md'].to_train_mode()
#             self.models['fm'].to_eval_mode()
            
#             # rand_sparsity = random.random() * (hyps['max_sparsity'] - hyps['min_sparsity']) + hyps['min_sparsity']
#             # elastic_dnn_util.set_master_dnn_sparsity(self.models['md'].models_dict['main'], rand_sparsity)
#             if md_output_hook is None:
#                 md_output_hook = self.models['md'].get_feature_hook()
#                 fm_output_hook = self.models['fm'].get_feature_hook()
                
#             x, y = next(train_loader)
#             if isinstance(x, dict):
#                 for k, v in x.items():
#                     if isinstance(v, torch.Tensor):
#                         x[k] = v.to(device)
#                 y = y.to(device)
#             else:
#                 x, y = x.to(device), y.to(device)
            
#             with torch.no_grad():
#                 fm_output = self.models['fm'].infer(x)
#             task_loss = self.models['md'].forward_to_get_task_loss(x, y)
            
#             if isinstance(md_output_hook, (tuple, list)):
#                 distill_loss = 0.
#                 for h1, h2 in zip(md_output_hook, fm_output_hook):
#                     md_output = h1.output
#                     fm_output = h2.output
#                     distill_loss += hyps['distill_loss_weight'] * self.models['md'].get_distill_loss(md_output, fm_output)
#             else:
#                 md_output = md_output_hook.output
#                 fm_output = fm_output_hook.output
#                 distill_loss = hyps['distill_loss_weight'] * self.models['md'].get_distill_loss(md_output, fm_output)

#             total_loss = task_loss + distill_loss
            
#             optimizer.zero_grad()
#             total_loss.backward()
            
#             # for n, p in self.models['md'].models_dict['main'].named_parameters():
#             #     if p.grad is not None:
#             #         print(n)
#             # exit()
            
#             optimizer.step()
#             scheduler.step()
            
#             if (iter_index + 1) % hyps['val_freq'] == 0:
                
#                 # elastic_dnn_util.clear_cached_channel_attention_in_master_dnn(self.models['md'].models_dict['main'])
#                 if isinstance(md_output_hook, (tuple, list)):
#                     [h.remove() for h in md_output_hook]
#                     [h.remove() for h in fm_output_hook]
#                 else:
#                     md_output_hook.remove()
#                     fm_output_hook.remove()
                
#                 md_output_hook = None
#                 fm_output_hook = None
                
#                 cur_md = self.models['md'].models_dict['main']
#                 md_for_test = deepcopy(self.models['md'].models_dict['main'])
#                 val_acc = 0.
                
#                 self.models['md'].models_dict['main'] = md_for_test
#                 self.models['md'].to_eval_mode()
#                 val_acc = self.models['md'].get_accuracy(val_loader)
                
#                 self.models['md'].models_dict['main'] = cur_md
                
#                 self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_last.pt'))
#                 self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_last.pt'))
                
#                 if val_acc > best_avg_val_acc:
#                     best_avg_val_acc = val_acc
#                     self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_best.pt'))
#                     self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_best.pt'))
                
#             tb_writer.add_scalars(f'losses', dict(task=task_loss, distill=distill_loss, total=total_loss), iter_index)
#             pbar.set_description(f'loss: {total_loss:.6f}')
#             if (iter_index + 1) >= hyps['val_freq']:
#                 tb_writer.add_scalar(f'accs/val_acc', val_acc, iter_index)
#                 pbar.set_description(f'loss: {total_loss:.6f}, val_acc: {val_acc:.4f}')
            
# code below is commented on 0716 17:49, because of a bug that the loss cannot be gradient decented 
# (bug confirmed, why? I dont know :)
            
            
            
            
            
            
            
            
from typing import Any, Dict
from schema import Schema, Or
import schema
from data import Scenario, MergedDataset
from methods.base.alg import BaseAlg
from data import build_dataloader
from ..model import ElasticDNN_OfflineFMModel, ElasticDNN_OfflineMDModel
from ...model.base import ElasticDNNUtil
import torch.optim
import tqdm
import torch.nn.functional as F
from torch import nn
from utils.dl.common.env import create_tbwriter
import os
import random
import numpy as np
from copy import deepcopy
from utils.dl.common.model import LayerActivation2, get_module
from utils.common.log import logger
from torchvision.transforms import Compose

class ElasticDNN_MDPretrainingWoFBSAlg(BaseAlg):
    """
    TODO: fine-tuned FM -> init MD -> trained MD -> construct indexes (only between similar weights) and fine-tune
    """
    def get_required_models_schema(self) -> Schema:
        return Schema({
            'fm': ElasticDNN_OfflineFMModel,
            'md': ElasticDNN_OfflineMDModel
        })
        
    def get_required_hyp_schema(self) -> Schema:
        from schema import Optional
        return Schema({
            'launch_tbboard': bool,
            
            'samples_size': any,
            'generate_md_width_ratio': int,
            
            'train_batch_size': int,
            'val_batch_size': int,
            'num_workers': int,            
            'optimizer': str,
            'optimizer_args': dict,
            'scheduler': str,
            'scheduler_args': dict,
            'num_iters': int,
            'val_freq': int,
            'distill_loss_weight': float,

            Optional('transform'): Compose,
        })

    def run(self, scenario: Scenario, hyps: Dict, collate_fn=None) -> Dict[str, Any]:
        super().run(scenario, hyps)
        
        assert isinstance(self.models['md'], ElasticDNN_OfflineMDModel) # for auto completion
        assert isinstance(self.models['fm'], ElasticDNN_OfflineFMModel) # for auto completion
        
        # 1. add FBS
        device = self.models['md'].device
        
        if self.models['md'].models_dict['main'] == -1:
            logger.info(f'init master DNN by reducing width of an adapted foundation model (already tuned by LoRA)...')
            
            before_fm_model = deepcopy(self.models['fm'].models_dict['main'])
            lora_util = self.models['fm'].get_lora_util()
            
            sample = hyps['samples_size']
            if isinstance(sample, (tuple, list)) and isinstance(sample[0], int):
                sample = torch.rand(hyps['samples_size']).to(device)
            
            lora_absorbed_fm_model = lora_util.absorb_lora_and_recover_net_structure(self.models['fm'].models_dict['main'], 
                                                                                    sample)
            self.models['fm'].models_dict['main'] = lora_absorbed_fm_model
            master_dnn = self.models['fm'].generate_md_by_reducing_width(hyps['generate_md_width_ratio'], 
                                                                        sample)
            self.models['fm'].models_dict['main'] = before_fm_model
            
            self.models['md'].models_dict['main'] = master_dnn
            self.models['md'].to(device)
        
        # 2. train (knowledge distillation, index relationship)
        if 'transform' in hyps.keys():
            offline_datasets = scenario.get_offline_datasets(transform=hyps['transform'])
        else:
            offline_datasets = scenario.get_offline_datasets()
        train_dataset = MergedDataset([d['train'] for d in offline_datasets.values()])
        val_dataset = MergedDataset([d['val'] for d in offline_datasets.values()])
        train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'],
                                        True, None, collate_fn=collate_fn))
        val_loader = build_dataloader(val_dataset, hyps['val_batch_size'], hyps['num_workers'],
                                      False, False, collate_fn=collate_fn)
        
        # logger.info(f'FM acc: {self.models["fm"].get_accuracy(val_loader):.4f}')
        
        # 2.1 train whole master DNN (knowledge distillation)
        for p in master_dnn.parameters():
            p.requires_grad = True
        self.models['md'].to_train_mode()
        
        optimizer = torch.optim.__dict__[hyps['optimizer']]([
            {'params': self.models['md'].models_dict['main'].parameters(), **hyps['optimizer_args']}
        ])
        scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args'])
        tb_writer = create_tbwriter(os.path.join(self.res_save_dir, 'tb_log'), launch_tbboard=hyps['launch_tbboard'])
        pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True)
        best_avg_val_acc = 0.
        
        md_output_hook = None
        
        for iter_index in pbar:
            self.models['md'].to_train_mode()
            self.models['fm'].to_eval_mode()
            
            # rand_sparsity = random.random() * (hyps['max_sparsity'] - hyps['min_sparsity']) + hyps['min_sparsity']
            # elastic_dnn_util.set_master_dnn_sparsity(self.models['md'].models_dict['main'], rand_sparsity)
            if md_output_hook is None:
                md_output_hook = self.models['md'].get_feature_hook()
                fm_output_hook = self.models['fm'].get_feature_hook()
                
            x, y = next(train_loader)
            if isinstance(x, dict):
                for k, v in x.items():
                    if isinstance(v, torch.Tensor):
                        x[k] = v.to(device)
                y = y.to(device)
            else:
                x, y = x.to(device), y.to(device)
            
            with torch.no_grad():
                fm_output = self.models['fm'].infer(x)
            task_loss = self.models['md'].forward_to_get_task_loss(x, y)
            
            md_output = md_output_hook.output
            fm_output = fm_output_hook.output
            
            distill_loss = hyps['distill_loss_weight'] * self.models['md'].get_distill_loss(md_output, fm_output)
            total_loss = task_loss + distill_loss
            
            optimizer.zero_grad()
            total_loss.backward()
            optimizer.step()
            scheduler.step()
            
            if (iter_index + 1) % hyps['val_freq'] == 0:
                
                # elastic_dnn_util.clear_cached_channel_attention_in_master_dnn(self.models['md'].models_dict['main'])
                md_output_hook.remove()
                md_output_hook = None
                fm_output_hook.remove()
                fm_output_hook = None
                
                cur_md = self.models['md'].models_dict['main']
                md_for_test = deepcopy(self.models['md'].models_dict['main'])
                val_acc = 0.
                
                self.models['md'].models_dict['main'] = md_for_test
                self.models['md'].to_eval_mode()
                val_acc = self.models['md'].get_accuracy(val_loader)
                
                self.models['md'].models_dict['main'] = cur_md
                
                self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_last.pt'))
                self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_last.pt'))
                
                if val_acc > best_avg_val_acc:
                    best_avg_val_acc = val_acc
                    self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_best.pt'))
                    self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_best.pt'))
                
            tb_writer.add_scalars(f'losses', dict(task=task_loss, distill=distill_loss, total=total_loss), iter_index)
            pbar.set_description(f'loss: {total_loss:.6f}')
            if (iter_index + 1) >= hyps['val_freq']:
                tb_writer.add_scalar(f'accs/val_acc', val_acc, iter_index)
                pbar.set_description(f'loss: {total_loss:.6f}, val_acc: {val_acc:.4f}')