File size: 7,341 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
from typing import Any, Dict, List
from schema import Schema
from data import Scenario, MergedDataset
from methods.base.alg import BaseAlg
from methods.base.model import BaseModel
from data import build_dataloader
import torch.optim
import tqdm
import os
import time
from abc import abstractmethod
import matplotlib.pyplot as plt
class OnlineFeatAlignModel(BaseModel):
def get_required_model_components(self) -> List[str]:
return ['main']
@abstractmethod
def get_feature_hook(self):
pass
@abstractmethod
def forward_to_get_task_loss(self, x, y):
pass
@abstractmethod
def get_trained_params(self):
pass
@abstractmethod
def get_mmd_loss(self, f1, f2):
pass
class FeatAlignAlg(BaseAlg):
def get_required_models_schema(self) -> Schema:
return Schema({
'main': OnlineFeatAlignModel
})
def get_required_hyp_schema(self) -> Schema:
return Schema({
'train_batch_size': int,
'val_batch_size': int,
'num_workers': int,
'optimizer': str,
'optimizer_args': dict,
'scheduler': str,
'scheduler_args': dict,
'num_iters': int,
'val_freq': int,
'feat_align_loss_weight': float
})
def run(self, scenario: Scenario, hyps: Dict) -> Dict[str, Any]:
super().run(scenario, hyps)
assert isinstance(self.models['main'], OnlineFeatAlignModel) # for auto completion
cur_domain_name = scenario.target_domains_order[scenario.cur_domain_index]
datasets_for_training = scenario.get_online_cur_domain_datasets_for_training()
train_dataset = datasets_for_training[cur_domain_name]['train']
val_dataset = datasets_for_training[cur_domain_name]['val']
datasets_for_inference = scenario.get_online_cur_domain_datasets_for_inference()
test_dataset = datasets_for_inference
train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'],
True, None))
test_loader = build_dataloader(test_dataset, hyps['val_batch_size'], hyps['num_workers'],
False, False)
source_datasets = [d['train'] for n, d in datasets_for_training.items() if n != cur_domain_name]
source_dataset = MergedDataset(source_datasets)
source_train_loader = iter(build_dataloader(source_dataset, hyps['train_batch_size'], hyps['num_workers'],
True, None))
# 1. generate surrogate DNN
# for n, m in self.models['main'].models_dict['md'].named_modules():
# if isinstance(m, nn.Linear):
# m.reset_parameters()
# from utils.dl.common.model import set_module
# for n, m in self.models['main'].models_dict['md'].named_modules():
# if m.__class__.__name__ == 'KTakesAll':
# set_module(self.models['main'].models_dict['md'], n, KTakesAll(0.5))
# self.models['main'].set_sd_sparsity(hyps['sd_sparsity'])
device = self.models['main'].device
# surrogate_dnn = self.models['main'].generate_sd_by_target_samples(next(train_loader)[0].to(device))
# self.models['sd'] = surrogate_dnn
# 2. train surrogate DNN
# TODO: train only a part of filters
trained_params = self.models['main'].get_trained_params()
optimizer = torch.optim.__dict__[hyps['optimizer']](trained_params, **hyps['optimizer_args'])
if hyps['scheduler'] != '':
scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args'])
else:
scheduler = None
pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True, desc='da...')
task_losses, mmd_losses = [], []
accs = []
total_train_time = 0.
feature_hook = self.models['main'].get_feature_hook()
for iter_index in pbar:
if iter_index % hyps['val_freq'] == 0:
from data import split_dataset
cur_test_batch_dataset = split_dataset(test_dataset, hyps['val_batch_size'], iter_index)[0]
cur_test_batch_dataloader = build_dataloader(cur_test_batch_dataset, hyps['train_batch_size'], hyps['num_workers'], False, False)
cur_acc = self.models['main'].get_accuracy(cur_test_batch_dataloader)
accs += [{
'iter': iter_index,
'acc': cur_acc
}]
cur_start_time = time.time()
self.models['main'].to_train_mode()
x, _ = next(train_loader)
if isinstance(x, dict):
for k, v in x.items():
if isinstance(v, torch.Tensor):
x[k] = v.to(device)
else:
x = x.to(device)
source_x, source_y = next(source_train_loader)
if isinstance(source_x, dict):
for k, v in source_x.items():
if isinstance(v, torch.Tensor):
source_x[k] = v.to(device)
source_y = source_y.to(device)
else:
source_x, source_y = source_x.to(device), source_y.to(device)
task_loss = self.models['main'].forward_to_get_task_loss(source_x, source_y)
source_features = feature_hook.input
self.models['main'].infer(x)
target_features = feature_hook.input
mmd_loss = hyps['feat_align_loss_weight'] * self.models['main'].get_mmd_loss(source_features, target_features)
loss = task_loss + mmd_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if scheduler is not None:
scheduler.step()
pbar.set_description(f'da... | cur_acc: {cur_acc:.4f}, task_loss: {task_loss:.6f}, mmd_loss: {mmd_loss:.6f}')
task_losses += [float(task_loss.cpu().item())]
mmd_losses += [float(mmd_loss.cpu().item())]
total_train_time += time.time() - cur_start_time
feature_hook.remove()
time_usage = total_train_time
plt.plot(task_losses, label='task')
plt.plot(mmd_losses, label='mmd')
plt.xlabel('iteration')
plt.ylabel('loss')
plt.savefig(os.path.join(self.res_save_dir, 'loss.png'))
plt.clf()
cur_test_batch_dataset = split_dataset(test_dataset, hyps['train_batch_size'], iter_index + 1)[0]
cur_test_batch_dataloader = build_dataloader(cur_test_batch_dataset, len(cur_test_batch_dataset), hyps['num_workers'], False, False)
cur_acc = self.models['main'].get_accuracy(cur_test_batch_dataloader)
accs += [{
'iter': iter_index + 1,
'acc': cur_acc
}]
return {
'accs': accs,
'time': time_usage
}, self.models |