File size: 12,481 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from typing import Any, Dict, List
from schema import Schema
from data import Scenario, MergedDataset
from methods.base.alg import BaseAlg
from methods.base.model import BaseModel
from data import build_dataloader
import torch.optim
import tqdm
import os
import time
from abc import abstractmethod
import matplotlib.pyplot as plt
from copy import deepcopy
from torch import nn

import torch.optim


def tent_as_detector(online_model, x, num_iters=1, lr=1e-4, l1_wd=0., strategy='ours'):
    model = online_model.models_dict['main']
    before_model = deepcopy(model)
    
    # from methods.tent import tent
    
    optimizer = torch.optim.SGD(
        model.parameters(), lr=lr, weight_decay=l1_wd)
    
    # from .tent import configure_model, forward_and_adapt
    # configure_model(model)
    output = online_model.infer(x)
    entropy = online_model.get_output_entropy(output).mean()
    
    entropy.backward()
    # for _ in range(num_iters):
    #     forward_and_adapt(x, model, optimizer)
    
    # entropy_loss = model.
    
    filters_sen_info = {}
    
    last_conv_name = None
    for (name, m1), m2 in zip(model.named_modules(), before_model.modules()):
        if isinstance(m1, nn.Linear):
            last_conv_name = name
            
        if not isinstance(m1, nn.LayerNorm):
            continue
        
        with torch.no_grad():
            features_weight_diff = ((m1.weight.data - m2.weight.data).abs())
            features_bias_diff = ((m1.bias.data - m2.bias.data).abs())
            
            features_diff = features_weight_diff + features_bias_diff
            
            features_diff_order = features_diff.argsort(descending=False)
            
            if strategy == 'ours':
                untrained_filters_index = features_diff_order[: int(len(features_diff) * 0.8)]
            elif strategy == 'random':
                untrained_filters_index = torch.randperm(len(features_diff))[: int(len(features_diff) * 0.8)]
            elif strategy == 'inversed_ours':
                untrained_filters_index = features_diff_order.flip(0)[: int(len(features_diff) * 0.8)]
            elif strategy == 'none':
                untrained_filters_index = None
            
            filters_sen_info[name] = dict(untrained_filters_index=untrained_filters_index, conv_name=last_conv_name)
            
    return filters_sen_info


class SGDF(torch.optim.SGD):

    @torch.no_grad()
    def step(self, p_names, conv_filters_sen_info, filters_sen_info, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            nesterov = group['nesterov']
            
            # assert len([i for i in model.named_parameters()]) == len([j for j in group['params']])

            for name, p in zip(p_names, group['params']):
                if p.grad is None:
                    continue
                
                layer_name = '.'.join(name.split('.')[0:-1])
                if layer_name in filters_sen_info.keys():
                    untrained_filters_index = filters_sen_info[layer_name]['untrained_filters_index']
                elif layer_name in conv_filters_sen_info.keys():
                    untrained_filters_index = conv_filters_sen_info[layer_name]['untrained_filters_index']
                else:
                    untrained_filters_index = []
                
                d_p = p.grad
                if weight_decay != 0:
                    d_p = d_p.add(p, alpha=weight_decay)
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
                    if nesterov:
                        d_p = d_p.add(buf, alpha=momentum)
                    else:
                        d_p = buf

                try:
                    d_p[untrained_filters_index] = 0.
                    p.add_(d_p, alpha=-group['lr'])
                except Exception as e:
                    print('SGDF error', name)

        return loss


class OnlineFeatAlignModel(BaseModel):
    def get_required_model_components(self) -> List[str]:
        return ['main']
    
    @abstractmethod
    def get_feature_hook(self):
        pass
    
    @abstractmethod
    def forward_to_get_task_loss(self, x, y):
        pass

    @abstractmethod
    def get_trained_params(self):
        pass
    
    @abstractmethod
    def get_mmd_loss(self, f1, f2):
        pass
    
    @abstractmethod
    def get_output_entropy(self, output):
        pass
    

class FeatAlignAlg(BaseAlg):
    def get_required_models_schema(self) -> Schema:
        return Schema({
            'main': OnlineFeatAlignModel
        })
        
    def get_required_hyp_schema(self) -> Schema:
        return Schema({
            'train_batch_size': int,
            'val_batch_size': int,
            'num_workers': int,
            'optimizer': str,
            'optimizer_args': dict,
            'scheduler': str,
            'scheduler_args': dict,
            'num_iters': int,
            'val_freq': int,
            'feat_align_loss_weight': float,
            'trained_neuron_selection_strategy': str
        })
        
    def run(self, scenario: Scenario, hyps: Dict) -> Dict[str, Any]:
        super().run(scenario, hyps)
        
        assert isinstance(self.models['main'], OnlineFeatAlignModel) # for auto completion
        
        cur_domain_name = scenario.target_domains_order[scenario.cur_domain_index]
        datasets_for_training = scenario.get_online_cur_domain_datasets_for_training()
        train_dataset = datasets_for_training[cur_domain_name]['train']
        val_dataset = datasets_for_training[cur_domain_name]['val']
        datasets_for_inference = scenario.get_online_cur_domain_datasets_for_inference()
        test_dataset = datasets_for_inference
        
        train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'],
                            True, None))
        test_loader = build_dataloader(test_dataset, hyps['val_batch_size'], hyps['num_workers'],
                                       False, False)
        
        source_datasets = [d['train'] for n, d in datasets_for_training.items() if n != cur_domain_name]
        source_dataset = MergedDataset(source_datasets)
        source_train_loader = iter(build_dataloader(source_dataset, hyps['train_batch_size'], hyps['num_workers'],
                            True, None))
        
        # 1. generate surrogate DNN
        # for n, m in self.models['main'].models_dict['md'].named_modules():
        #     if isinstance(m, nn.Linear):
        #         m.reset_parameters()
        # from utils.dl.common.model import set_module
        
        # for n, m in self.models['main'].models_dict['md'].named_modules():
        #     if m.__class__.__name__ == 'KTakesAll':
        #         set_module(self.models['main'].models_dict['md'], n, KTakesAll(0.5))
        # self.models['main'].set_sd_sparsity(hyps['sd_sparsity'])
        device = self.models['main'].device
        # surrogate_dnn = self.models['main'].generate_sd_by_target_samples(next(train_loader)[0].to(device))
        # self.models['sd'] = surrogate_dnn
        
        # 2. train surrogate DNN
        # TODO: train only a part of filters
        trained_params, p_name = self.models['main'].get_trained_params()
        
        # optimizer = torch.optim.__dict__[hyps['optimizer']](trained_params, **hyps['optimizer_args'])
        
        optimizer = SGDF(trained_params, **hyps['optimizer_args'])
        
        if hyps['scheduler'] != '':
            scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args'])
        else:
            scheduler = None
        
        pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True, desc='da...')
        task_losses, mmd_losses = [], []
        accs = []
        
        
        x, _ = next(train_loader)
        if isinstance(x, dict):
            for k, v in x.items():
                if isinstance(v, torch.Tensor):
                    x[k] = v.to(device)
        else:
            x = x.to(device)
        filters_sen_info = tent_as_detector(self.models['main'], x, strategy=hyps['trained_neuron_selection_strategy'])
        conv_filters_sen_info = {v['conv_name']: v for _, v in filters_sen_info.items()}
        
        
        total_train_time = 0.
        
        feature_hook = self.models['main'].get_feature_hook()
        
        for iter_index in pbar:
            
            if iter_index % hyps['val_freq'] == 0:
                from data import split_dataset
                cur_test_batch_dataset = split_dataset(test_dataset, hyps['val_batch_size'], iter_index)[0]
                cur_test_batch_dataloader = build_dataloader(cur_test_batch_dataset, hyps['train_batch_size'], hyps['num_workers'], False, False)
                cur_acc = self.models['main'].get_accuracy(cur_test_batch_dataloader)
                accs += [{
                    'iter': iter_index,
                    'acc': cur_acc
                }]
            
            cur_start_time = time.time()
            
            self.models['main'].to_train_mode()
            
            x, _ = next(train_loader)
            
            if isinstance(x, dict):
                for k, v in x.items():
                    if isinstance(v, torch.Tensor):
                        x[k] = v.to(device)
            else:
                x = x.to(device)
            
            source_x, source_y = next(source_train_loader)
            
            if isinstance(source_x, dict):
                for k, v in source_x.items():
                    if isinstance(v, torch.Tensor):
                        source_x[k] = v.to(device)
                source_y = source_y.to(device)
            else:
                source_x, source_y = source_x.to(device), source_y.to(device)
            
            task_loss = self.models['main'].forward_to_get_task_loss(source_x, source_y)
            source_features = feature_hook.input
            
            self.models['main'].infer(x)
            target_features = feature_hook.input
            
            mmd_loss = hyps['feat_align_loss_weight'] * self.models['main'].get_mmd_loss(source_features, target_features)
            
            loss = task_loss + mmd_loss
            
            optimizer.zero_grad()
            loss.backward()
            # optimizer.step()
            optimizer.step(p_name, conv_filters_sen_info, filters_sen_info)
            if scheduler is not None:
                scheduler.step()
            
            pbar.set_description(f'da... | cur_acc: {cur_acc:.4f}, task_loss: {task_loss:.6f}, mmd_loss: {mmd_loss:.6f}')
            task_losses += [float(task_loss.cpu().item())]
            mmd_losses += [float(mmd_loss.cpu().item())]
            
            total_train_time += time.time() - cur_start_time
        
        feature_hook.remove()
        
        time_usage = total_train_time
        
        plt.plot(task_losses, label='task')
        plt.plot(mmd_losses, label='mmd')
        plt.xlabel('iteration')
        plt.ylabel('loss')
        plt.savefig(os.path.join(self.res_save_dir, 'loss.png'))
        plt.clf()
        
        cur_test_batch_dataset = split_dataset(test_dataset, hyps['train_batch_size'], iter_index + 1)[0]
        cur_test_batch_dataloader = build_dataloader(cur_test_batch_dataset, len(cur_test_batch_dataset), hyps['num_workers'], False, False)
        cur_acc = self.models['main'].get_accuracy(cur_test_batch_dataloader)
        accs += [{
            'iter': iter_index + 1,
            'acc': cur_acc
        }]
        
        return {
            'accs': accs,
            'time': time_usage
        }, self.models