File size: 1,919 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from ..data_aug import imagenet_like_image_train_aug, imagenet_like_image_test_aug
from ..ab_dataset import ABDataset
from ..dataset_split import train_val_split
from torchvision.datasets import ImageFolder
import os
from typing import Dict, List, Optional
from torchvision.transforms import Compose

from ..registery import dataset_register


with open(os.path.join(os.path.dirname(__file__), 'imagenet_classes.txt'), 'r') as f:
    classes = [line.split(' ')[2].strip() for line in f.readlines()]
    assert len(classes) == 1000
    
@dataset_register(
    name='ImageNet-A', 
    classes=classes, 
    task_type='Image Classification',
    object_type='Generic Object',
    class_aliases=[],
    shift_type={
        'ImageNet': 'Adversarially Filtered Shifts' # for ImageNet, ImageNet-A causes "Adversarially Filtered Shifts"
    }
)
class ImageNetA(ABDataset):    
    def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], 
                       classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
        # TODO: just for scenario building test
        if transform is None:
            transform = imagenet_like_image_train_aug() if split == 'train' else imagenet_like_image_test_aug()
            self.transform = transform
        root_dir = os.path.join(root_dir, 'train' if split != 'test' else 'val')
        dataset = ImageFolder(root_dir, transform=transform)
        
        if len(ignore_classes) > 0:
            ignore_classes_idx = [classes.index(c) for c in ignore_classes]
            dataset.samples = [s for s in dataset.samples if s[1] not in ignore_classes_idx]
            
        if idx_map is not None:
            dataset.samples = [(s[0], idx_map[s[1]]) if s[1] in idx_map.keys() else s for s in dataset.samples]
        
        if split != 'test':
            dataset = train_val_split(dataset, split)
        return dataset