File size: 10,522 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
from curses import raw
from .data_augment import TrainTransform, ValTransform
from .datasets.coco import COCODataset
from .datasets.mm_coco import MM_COCODataset
from .datasets.mosaicdetection import MosaicDetection
from utils.common.others import HiddenPrints
import os
import json
from tqdm import tqdm
from utils.common.log import logger
from .norm_categories_index import ensure_index_start_from_1_and_successive
def get_default_yolox_coco_dataset(data_dir, json_file_path, img_size=416, train=True):
logger.info(f'[get yolox dataset] "{json_file_path}"')
if train:
with HiddenPrints():
dataset = COCODataset(
data_dir=data_dir,
json_file=json_file_path,
name='',
img_size=(img_size, img_size),
preproc=TrainTransform(
max_labels=50,
flip_prob=0.5,
hsv_prob=1.0),
cache=False,
)
# dataset = COCODataset(
# data_dir=data_dir,
# json_file=json_file_path,
# name='',
# img_size=(img_size, img_size),
# preproc=ValTransform(legacy=False),
# )
dataset = MosaicDetection(
dataset,
mosaic=True,
img_size=(img_size, img_size),
preproc=TrainTransform(
max_labels=120,
flip_prob=0.5,
hsv_prob=1.0),
degrees=10.0,
translate=0.1,
mosaic_scale=(0.1, 2),
mixup_scale=(0.5, 1.5),
shear=2.0,
enable_mixup=True,
mosaic_prob=1.0,
mixup_prob=1.0,
only_return_xy=True
)
else:
with HiddenPrints():
dataset = COCODataset(
data_dir=data_dir,
json_file=json_file_path,
name='',
img_size=(img_size, img_size),
preproc=ValTransform(legacy=False),
)
# print(json_file_path, len(dataset))
return dataset
def get_yolox_coco_dataset_with_caption(data_dir, json_file_path, img_size=416, transform=None, train=True, classes=None):
logger.info(f'[get yolox dataset] "{json_file_path}"')
if train:
with HiddenPrints():
dataset = COCODataset(
data_dir=data_dir,
json_file=json_file_path,
name='',
img_size=(img_size, img_size),
preproc=TrainTransform(
max_labels=50,
flip_prob=0.5,
hsv_prob=1.0),
cache=False,
)
# dataset = COCODataset(
# data_dir=data_dir,
# json_file=json_file_path,
# name='',
# img_size=(img_size, img_size),
# preproc=ValTransform(legacy=False),
# )
coco = dataset.coco
dataset = MosaicDetection(
dataset,
mosaic=True,
img_size=(img_size, img_size),
preproc=TrainTransform(
max_labels=120,
flip_prob=0.5,
hsv_prob=1.0),
degrees=10.0,
translate=0.1,
mosaic_scale=(0.1, 2),
mixup_scale=(0.5, 1.5),
shear=2.0,
enable_mixup=True,
mosaic_prob=1.0,
mixup_prob=1.0,
only_return_xy=True
)
dataset = MM_COCODataset(dataset, transform=transform, split='train', coco=coco, classes=classes)
else:
with HiddenPrints():
dataset = COCODataset(
data_dir=data_dir,
json_file=json_file_path,
name='',
img_size=(img_size, img_size),
preproc=ValTransform(legacy=False),
)
dataset = MM_COCODataset(dataset, transform=transform, split='val', coco=dataset.coco, classes=classes)
# print(json_file_path, len(dataset))
return dataset
import hashlib
def _hash(o):
if isinstance(o, list):
o = sorted(o)
elif isinstance(o, dict):
o = {k: o[k] for k in sorted(o)}
elif isinstance(o, set):
o = sorted(list(o))
# else:
# print(type(o))
obj = hashlib.md5()
obj.update(str(o).encode('utf-8'))
return obj.hexdigest()
DEBUG = True
def remap_dataset(json_file_path, ignore_classes, category_idx_map):
# k and v in category_idx_map indicates the index of categories, not 'id' of categories
ignore_classes = sorted(list(ignore_classes))
# print(ignore_classes, category_idx_map)
if len(ignore_classes) == 0 and category_idx_map is None:
return json_file_path
# hash_str = '_'.join(ignore_classes) + str(category_idx_map)
hash_str = _hash(f'yolox_dataset_cache_{_hash(ignore_classes)}_{_hash(category_idx_map)}')
cached_json_file_path = f'{json_file_path}.{hash(hash_str)}'
# TODO:
if os.path.exists(cached_json_file_path):
if DEBUG:
os.remove(cached_json_file_path)
else:
logger.info(f'get cached dataset in {cached_json_file_path}')
return cached_json_file_path
with open(json_file_path, 'r') as f:
raw_ann = json.load(f)
id_to_idx_map = {c['id']: i for i, c in enumerate(raw_ann['categories'])}
ignore_classes_id = [c['id'] for c in raw_ann['categories'] if c['name'] in ignore_classes]
raw_ann['categories'] = [c for c in raw_ann['categories'] if c['id'] not in ignore_classes_id]
raw_ann['annotations'] = [ann for ann in raw_ann['annotations'] if ann['category_id'] not in ignore_classes_id]
ann_img_map = {ann['image_id']: 1 for ann in raw_ann['annotations']}
raw_ann['images'] = [img for img in raw_ann['images'] if img['id'] in ann_img_map.keys()]
# print(category_idx_map, id_to_idx_map)
# NOTE: category idx starts from 0 or 1? 1
# NOTE: reshuffle "categories"
new_categories = [{"id": i, "name": f"dummy-{i}"} for i in range(int(os.environ['_ZQL_NUMC']))]
for c in raw_ann['categories']:
# print(c)
# print(id_to_idx_map, c['id'], category_idx_map)
new_idx = category_idx_map[id_to_idx_map[c['id']]]
new_categories[new_idx] = c
c['id'] = new_idx
raw_ann['categories'] = new_categories
for ann in raw_ann['annotations']:
ann['category_id'] = category_idx_map[id_to_idx_map[ann['category_id']]]
if 'segmentation' in ann:
del ann['segmentation']
with open(cached_json_file_path, 'w') as f:
json.dump(raw_ann, f)
return cached_json_file_path
def coco_split(ann_json_file_path, ratio=0.8):
if os.path.exists(ann_json_file_path + f'.{ratio}.split1') and not DEBUG:
return ann_json_file_path + f'.{ratio}.split1', ann_json_file_path + f'.{ratio}.split2'
with open(ann_json_file_path, 'r') as f:
raw_ann = json.load(f)
import copy
import torch
res_ann1, res_ann2 = copy.deepcopy(raw_ann), copy.deepcopy(raw_ann)
images = raw_ann['images']
cache_images_path = ann_json_file_path + '.tmp-cached-shuffled-images'
if True:
import random
random.shuffle(images)
torch.save(images, cache_images_path)
else:
images = torch.load(cache_images_path)
images1, images2 = images[0: int(len(images) * ratio)], images[int(len(images) * ratio): ]
images1_id, images2_id = {i['id']: 0 for i in images1}, {i['id']: 0 for i in images2}
ann1 = [ann for ann in raw_ann['annotations'] if ann['image_id'] in images1_id.keys()]
ann2 = [ann for ann in raw_ann['annotations'] if ann['image_id'] in images2_id.keys()]
res_ann1['images'] = images1
res_ann1['annotations'] = ann1
res_ann2['images'] = images2
res_ann2['annotations'] = ann2
from utils.common.data_record import write_json
write_json(ann_json_file_path + f'.{ratio}.split1', res_ann1, indent=0, backup=False)
write_json(ann_json_file_path + f'.{ratio}.split2', res_ann2, indent=0, backup=False)
return ann_json_file_path + f'.{ratio}.split1', ann_json_file_path + f'.{ratio}.split2'
def coco_train_val_test_split(ann_json_file_path, split):
train_ann_p, test_ann_p = coco_split(ann_json_file_path)
if split == 'test':
return test_ann_p
train_ann_p, val_ann_p = coco_split(train_ann_p)
return train_ann_p if split == 'train' else val_ann_p
def coco_train_val_split(train_ann_p, split):
train_ann_p, val_ann_p = coco_split(train_ann_p)
return train_ann_p if split == 'train' else val_ann_p
def visualize_coco_dataset(dataset, num_images, res_save_p, cxcy):
from torchvision.transforms import ToTensor
from torchvision.utils import make_grid
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt
import numpy as np
def draw_bbox(img, bbox, label, f):
# if f:
# img = np.uint8(img.transpose(1, 2, 0))
img = Image.fromarray(img)
draw = ImageDraw.Draw(img)
draw.rectangle(bbox, outline=(255, 0, 0), width=6)
draw.text((bbox[0], bbox[1]), label)
return np.array(img)
d = dataset.dataset
if d.__class__.__name__ == 'MosaicDetection':
d = d._dataset
class_ids = d.class_ids # category_id
def get_cname(label):
return d.coco.loadCats(class_ids[int(label)])[0]['name']
def cxcywh2xyxy(bbox):
cx, cy, w, h = bbox
x1, y1 = cx - w/2, cy - h/2
x2, y2 = cx + w/2, cy + h/2
return x1, y1, x2, y2
xs = []
import random
for image_i in range(num_images):
x, y = dataset[random.randint(0, len(dataset) - 1)][:2]
x = np.uint8(x.transpose(1, 2, 0))
for label_i, label_info in enumerate(y):
if sum(label_info[1:]) == 0: # pad label
break
label, bbox = label_info[0], label_info[1:]
if cxcy:
bbox = cxcywh2xyxy(bbox)
x = draw_bbox(x, bbox, str(label) + '-' + get_cname(label), label_i == 0)
# print(x.shape)
xs += [x]
xs = [ToTensor()(x) for x in xs]
grid = make_grid(xs, normalize=True, nrow=2)
plt.axis('off')
img = grid.permute(1, 2, 0).numpy()
plt.imshow(img)
plt.savefig(res_save_p, dpi=300)
plt.clf()
|