File size: 8,181 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
"""
Data augmentation functionality. Passed as callable transformations to
Dataset classes.

The data augmentation procedures were interpreted from @weiliu89's SSD paper
http://arxiv.org/abs/1512.02325
"""

import math
import random

import cv2
import numpy as np

# from models.yolox.yolox.utils import xyxy2cxcywh


def xyxy2cxcywh(bboxes):
    bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]
    bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]
    bboxes[:, 0] = bboxes[:, 0] + bboxes[:, 2] * 0.5
    bboxes[:, 1] = bboxes[:, 1] + bboxes[:, 3] * 0.5
    return bboxes



def augment_hsv(img, hgain=5, sgain=30, vgain=30):
    hsv_augs = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain]  # random gains
    hsv_augs *= np.random.randint(0, 2, 3)  # random selection of h, s, v
    hsv_augs = hsv_augs.astype(np.int16)
    img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype(np.int16)

    img_hsv[..., 0] = (img_hsv[..., 0] + hsv_augs[0]) % 180
    img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_augs[1], 0, 255)
    img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_augs[2], 0, 255)

    cv2.cvtColor(img_hsv.astype(img.dtype), cv2.COLOR_HSV2BGR, dst=img)  # no return needed


def get_aug_params(value, center=0):
    if isinstance(value, float):
        return random.uniform(center - value, center + value)
    elif len(value) == 2:
        return random.uniform(value[0], value[1])
    else:
        raise ValueError(
            "Affine params should be either a sequence containing two values\
             or single float values. Got {}".format(value)
        )


def get_affine_matrix(
    target_size,
    degrees=10,
    translate=0.1,
    scales=0.1,
    shear=10,
):
    twidth, theight = target_size

    # Rotation and Scale
    angle = get_aug_params(degrees)
    scale = get_aug_params(scales, center=1.0)

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    R = cv2.getRotationMatrix2D(angle=angle, center=(0, 0), scale=scale)

    M = np.ones([2, 3])
    # Shear
    shear_x = math.tan(get_aug_params(shear) * math.pi / 180)
    shear_y = math.tan(get_aug_params(shear) * math.pi / 180)

    M[0] = R[0] + shear_y * R[1]
    M[1] = R[1] + shear_x * R[0]

    # Translation
    translation_x = get_aug_params(translate) * twidth  # x translation (pixels)
    translation_y = get_aug_params(translate) * theight  # y translation (pixels)

    M[0, 2] = translation_x
    M[1, 2] = translation_y

    return M, scale


def apply_affine_to_bboxes(targets, target_size, M, scale):
    num_gts = len(targets)

    # warp corner points
    twidth, theight = target_size
    corner_points = np.ones((4 * num_gts, 3))
    corner_points[:, :2] = targets[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
        4 * num_gts, 2
    )  # x1y1, x2y2, x1y2, x2y1
    corner_points = corner_points @ M.T  # apply affine transform
    corner_points = corner_points.reshape(num_gts, 8)

    # create new boxes
    corner_xs = corner_points[:, 0::2]
    corner_ys = corner_points[:, 1::2]
    new_bboxes = (
        np.concatenate(
            (corner_xs.min(1), corner_ys.min(1), corner_xs.max(1), corner_ys.max(1))
        )
        .reshape(4, num_gts)
        .T
    )

    # clip boxes
    new_bboxes[:, 0::2] = new_bboxes[:, 0::2].clip(0, twidth)
    new_bboxes[:, 1::2] = new_bboxes[:, 1::2].clip(0, theight)

    targets[:, :4] = new_bboxes

    return targets


def random_affine(
    img,
    targets=(),
    target_size=(640, 640),
    degrees=10,
    translate=0.1,
    scales=0.1,
    shear=10,
):
    M, scale = get_affine_matrix(target_size, degrees, translate, scales, shear)

    img = cv2.warpAffine(img, M, dsize=target_size, borderValue=(114, 114, 114))

    # Transform label coordinates
    if len(targets) > 0:
        targets = apply_affine_to_bboxes(targets, target_size, M, scale)

    return img, targets


def _mirror(image, boxes, prob=0.5):
    _, width, _ = image.shape
    if random.random() < prob:
        image = image[:, ::-1]
        boxes[:, 0::2] = width - boxes[:, 2::-2]
    return image, boxes


def preproc(img, input_size, swap=(2, 0, 1)):
    if len(img.shape) == 3:
        padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
    else:
        padded_img = np.ones(input_size, dtype=np.uint8) * 114

    r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
    resized_img = cv2.resize(
        img,
        (int(img.shape[1] * r), int(img.shape[0] * r)),
        interpolation=cv2.INTER_LINEAR,
    ).astype(np.uint8)
    padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img

    padded_img = padded_img.transpose(swap)
    padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
    return padded_img, r


class TrainTransform:
    def __init__(self, max_labels=50, flip_prob=0.5, hsv_prob=1.0):
        self.max_labels = max_labels
        self.flip_prob = flip_prob
        self.hsv_prob = hsv_prob

    def __call__(self, image, targets, input_dim):
        boxes = targets[:, :4].copy()
        labels = targets[:, 4].copy()
        if len(boxes) == 0:
            targets = np.zeros((self.max_labels, 5), dtype=np.float32)
            image, r_o = preproc(image, input_dim)
            return image, targets

        image_o = image.copy()
        targets_o = targets.copy()
        height_o, width_o, _ = image_o.shape
        boxes_o = targets_o[:, :4]
        labels_o = targets_o[:, 4]
        # bbox_o: [xyxy] to [c_x,c_y,w,h]
        boxes_o = xyxy2cxcywh(boxes_o)

        if random.random() < self.hsv_prob:
            augment_hsv(image)
        image_t, boxes = _mirror(image, boxes, self.flip_prob)
        height, width, _ = image_t.shape
        image_t, r_ = preproc(image_t, input_dim)
        # boxes [xyxy] 2 [cx,cy,w,h]
        boxes = xyxy2cxcywh(boxes)
        boxes *= r_

        mask_b = np.minimum(boxes[:, 2], boxes[:, 3]) > 1
        boxes_t = boxes[mask_b]
        labels_t = labels[mask_b]

        if len(boxes_t) == 0:
            image_t, r_o = preproc(image_o, input_dim)
            boxes_o *= r_o
            boxes_t = boxes_o
            labels_t = labels_o

        labels_t = np.expand_dims(labels_t, 1)

        targets_t = np.hstack((labels_t, boxes_t))
        padded_labels = np.zeros((self.max_labels, 5))
        padded_labels[range(len(targets_t))[: self.max_labels]] = targets_t[
            : self.max_labels
        ]
        padded_labels = np.ascontiguousarray(padded_labels, dtype=np.float32)
        return image_t, padded_labels


class ValTransform:
    """
    Defines the transformations that should be applied to test PIL image
    for input into the network

    dimension -> tensorize -> color adj

    Arguments:
        resize (int): input dimension to SSD
        rgb_means ((int,int,int)): average RGB of the dataset
            (104,117,123)
        swap ((int,int,int)): final order of channels

    Returns:
        transform (transform) : callable transform to be applied to test/val
        data
    """

    def __init__(self, swap=(2, 0, 1), legacy=False):
        self.swap = swap
        self.legacy = legacy

    # assume input is cv2 img for now
    def __call__(self, img, res, input_size):
        max_labels = 80
        
        targets = res
        boxes = targets[:, :4].copy()
        labels = targets[:, 4].copy()
        labels = np.expand_dims(labels, 1)
        targets = np.hstack((labels, boxes))
        padded_labels = np.zeros((max_labels, 5))
        padded_labels[range(len(targets))[: max_labels]] = targets[
            : max_labels
        ]
        padded_labels = np.ascontiguousarray(padded_labels, dtype=np.float32)
        
        img, _ = preproc(img, input_size, self.swap)
        if self.legacy:
            img = img[::-1, :, :].copy()
            img /= 255.0
            img -= np.array([0.485, 0.456, 0.406]).reshape(3, 1, 1)
            img /= np.array([0.229, 0.224, 0.225]).reshape(3, 1, 1)
        
        # return img, np.zeros((1, 5))
        
        # return real labels for visualization
        return img, padded_labels