File size: 85,546 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
from ..data_aug import pil_image_to_tensor
from ..ab_dataset import ABDataset
from ..dataset_split import train_val_test_split
from ..dataset_cache import get_dataset_cache_path, read_cached_dataset_status, cache_dataset_status
# from .mm_image_folder import MMImageFolder
from ..dataset_split import train_val_split
# from torchvision.datasets import CIFAR10 as RawCIFAR10
import os
from typing import Dict, List, Optional
from torchvision.transforms import Compose, Resize
from utils.common.others import HiddenPrints
import numpy as np
from ..registery import dataset_register
import torch
from transformers import ViltProcessor, ViltForQuestionAnswering
from PIL import Image
from utils.common.log import logger
from utils.common.data_record import read_json
import cv2
all_classes = ['net', 'pitcher', 'orange', 'yes', 'white', 'skiing', 'red', 'frisbee', 'brushing teeth', 'no', 'black and white', 'skateboard', '1', 'blue', 'green', 'motorcycle', 'gray', '2', 'purse', 'skis', 'poles', 'surfboard', 'dog', 'on', 'office', 'large', 'very big', 'laptop', 'vent', 'computer', 'black', 'bear', '3', 'wii', 'glasses', 'tree', 'eating', 'log', '5', 'left', 'living room', 'pink', 'right', 'railing', 'grass', 'wire', '10 years', 'knife', 'cake', 'banana', 'chef', 'vanilla', '4', 'outdoor', 'mustard', 'bun', 'clouds', 'dock', 'brown', 'silver', 'refrigerator', 'square', 'teddy', 'elm', 'stripes', 'baseball', 'catcher', 'beer', 'bottom', 'north', 'nike', 'yellow and white', 'morning', 'elephant', 'red and white', 'propeller', 'tan', 'wall', 'clock', 'table', '0', 'wood', 'christmas', 'spinach', 'thick', 'bag', 'leaves', 'necklace', '6', 'bathroom', 'shower', 'towel', 'solid', 'referee', 'wilson', 'e', '24', 'hat', 'grazing', 'sheep', '10', 'tag', 'spanish', 'hot dog', 'plate', 'lunch', 'butter', 'peppers', 'onions', 'very', 'pig', 'sweet', 'flowers', 'floral', 'yellow', 'window', '7', 'pizza', 'car', '', 'cargo', 'stairs', 'abstract', 'rug', 'baseball cap', 'texting', 'pole', 'crosswalk', 'nothing', 'urban', 'bus', 'light', 'afternoon', 'boat', 'cheese', 'paper', 'real', 'sun', 'birthday', 'words', 'inside', 'shadows', 'tomato', 'evergreen', '100 feet', 'trees', 'building', 'hay', 'ski pole', 'walking', 'ice', 'laundry', 'pepsi', 'good', '1:50', 'purple', '13', 'africa', 'teddy bears', 'socks', 'giraffe', 'soccer', 'blue and yellow', 'zebras', 'cupcake', 'broccoli', 'parking lot', 'cows', 'herding', 'on table', 'fish', 'nightstand', '50', 'overcast', 'cross', 'toaster oven', 'tile', '11:55', 'red and yellow', 'nowhere', 'hair dryer', 'truck', '11', 'people', 'rectangle', 'hot dogs', 'party', '12:55', 'apron', 'kitchen', 'cooking', 'ring', '1 way', 'stop', 'neither', 'many', 'female', 'brushing', 'tie', 'tennis racket', 'knife and fork', 'restaurant', 'cat', 'bed', 'sand', 'ocean', 'cold', 'kites', 'cumulus', 'standing', 'male', 'star', 'tracks', 'chocolate', 'round', 'fork and knife', 'yankees', 'pictures', 'dots', 'bird', 'parrot', 'red white and blue', 'man', 'metal', 'fence', 'snowboarding', 'pine', 'snow', 'shorts', 'swim', 'wine', 'brick', 'no parking', 'children', 'beef', 'phone', 'english', 'cell phone', 'pink and yellow', 'clear', 'watermelon', 'bedroom', 'fork', 'cow', 'rackets', 'tennis rackets', '8', 'collar', 'tennis', 'playing tennis', 'skirt', '30', 'polka dot', 'beach', 'horse', 'grill', 'african american', 'down', 'street', 'in air', 'sweater', 'yellow and blue', 'park', 'spectators', 'parasailing', '31', 'river', '55', 'shadow', 'winter', 'chicken', 'tea', 'evening', 'dusk', 'ski resort', 'helmet', 'bench', 'resting', 'elephants', 'southwest', 'usa', 'cars', 'town', 'bananas', 'umbrella', 'container', 'woman', 'on counter', 'salad', 'striped', 'motel', 'vertical', 'oranges', 'hot sauce', 'bottle', 'juice', 'eyes', 'ground', 'backpack', 'black and yellow', 'forward', 'jackets', '1 on right', 'green and yellow', 'playing baseball', 'riding', 'sitting', 'carrot', 'basket', 'seagull', 'ski poles', 'p', 'parking', 'street light', 'strap', 'bike', 'riding bike', 'poodle', 'shoes', 'carpet', 'lettuce', 'food', '1 foot', 'roses', 'mountains', 'scissors', 'camera', 'beige', 'beard', 'cutting', 'baby', 'tape', 'watch', 'never', 'taking picture', 'eggs', 'syrup', 'sandwich', 'water skiing', 'microphone', 'back', 'bears', 'donuts', 'w', 'sky', 'double decker', 'england', 'surfing', 'running', 'shirt', 'barn', 'weather vane', 'white and blue', 'fishing', 'bridge', 'los angeles', 'open', 'red sox', 'bat', 'plane', 'white and green', 'transportation', 'sunny', 'bus stop', 'city', 'brown and white', 'bicycle', 'crow', 'magazines', 'daisy', '14', 'old', 'curtains', 'snowboard', 'dinosaur', 'racing', 'asphalt', 'court', 'plastic', 'circle', 'red and blue', 'zebra', '12', 'biplane', 'shallow', 'brazil', 'logo', '2:20', 'electric', 'motion', 'toothbrushes', 'orange and white', '66', 'spoon', 'toyota', 'tennis shoes', '46', 'second', 'no 1', 'iphone', 'friend', 'apple', '15', 'tiger', 'glove', 'airplane', 'bow', 'air france', 'passengers', 'tv', 'on building', '3:55', 'victorian', 'steeple', 'happy', 'skateboarding', 'fruit', 'cutting board', 'cantaloupe', 'kiwi', 'sliced', 'heart', 'water', 'rainy', 'carrots', 'giraffes', 'eat', 'ramp', 'lab', 'field', 'horizontal', 'birds', 'home', 'shrimp', '12 feet', 'girl', 'modern', 'dell', 'boots', 'sunglasses', 'black and orange', 'yellow and black', 'gloves', 'hp', 'desk', 'both', 'sign', 'on street', '2000', 'cirrus', 'ceiling', 'fluorescent', 'up', '9', 'boys', 'playing soccer', 'american', 'passenger', 'turn', 'palm', 'wedding', 'branch', 'parrots', 'air force', 'on tracks', 'small', 'dirty', 'france', 'honda', '2.00', 'vase', 'flying', 'driving', 'tissue', 'protest', 'corona', 'twin', 'clothes', 't shirt', 'window sill', 'wild', 'noon', 'caution', 'spring', 'raining', 'cane', 'school', 'windsurfing', 'parachute', 'black and red', '25', 'background', 'toaster', 'planes', 'yellow and red', 'spatula', '10:10', 'ivory', 'train', 'highway', 'off', 'on track', 'electricity', 'italy', 'dinner', 'sink', 'squares', '5 ft', 'parked', 'store', 'dress', 'signs', 'football', 'rugby', 'stainless steel', 'dirt', 'blue and white', 'klm', 'house', 'unknown', 'ford', 'reading', 'chair', 'mountain', 'alive', 'water skis', 'picture', 'parade', 'trailer', 'boating', 'holding it', 'shade', 'cloth', 'candle', 'hose', 'hand', '3:25', 'on sidewalk', 'poster', 'downhill', 'reflection', 'summer', 'pickles', 'halloween', 'bats', 'london', 'zoo', 'surfer', 'racket', 'flickr', 'cutting hair', 'strawberries', 'mushroom', 'teddy bear', 'big', 'suitcase', 'veggie', 'pepper', 'houses', '70', 'toshiba', 'triangle', 'boxes', 'photograph', 'smoke', 'engine', 'camel', 'sidewalk', 'left 1', 'red and green', '4:35', 'on couch', 'candy', 'homemade', 'mouse', 'box', 'movie', '45', 'strawberry', 'fridge', 'full', 'vegetables', 'bright', 'play', 'remote', 'pond', 'savannah', 'celery', 'concrete', 'semi', 'scania', 'safety', 'posing', 'fabric', 'laying', 'couch', 'blueberries', 'handle', 'pipe', 'stick', 'steak', 'chain link', 'barbed wire', 'mozzarella', 'soda', 'fire hydrant', 'cat food', 'pepperoni', 'lot', 'licking', 'red and black', 'clay', 'tennis court', 'jumping', 'potatoes', 'toothbrush', 'kite', 'flying kite', 'broken', 'black and silver', 'lap', 'outside', '44', 'delta', 'greyhound', 'talking on phone', 'bad', 'kettle', '35', 'motorcycles', 'produce', 'steering wheel', '18', 'humans', 'coffee', 'white and brown', 'fall', 'bread', 'cherry', '4:30', 'flag', 'night', 'lamp', 'cucumber', 'porcelain', 'oval', 'museum', 'rain', 'sprinkles', '20', 'kids', 'bracelet', 'sneakers', 'mask', 'mickey mouse', 'very high', 'costume', 'cabbage', 'paint', 'lighting', 'young', 'air conditioner', 'wooden', 'board', 'beets', '16', 'lights', 'ladder', 'glass', 'fries', 'steamed', 'shepherd', 'cotton', 'suit', 'goatee', 'on his head', 'print', 'happy birthday', 'forks', 'travel', 'maple', '200', 'oil', 'jeans', 'can', 'chopsticks', 'on wall', 'construction', '36', 'chinese', 'festival', 'gas', 'throwing', 'circus', 'wires', 'not possible', 'plates', 'sugar', 'in', "women's", 'door', 'volleyball', 'serving', 'ponytail', 'business', 'decoration', 'santa', 'flat', 'barrel', '12:15', 'candles', 'free', 'hair', 'ball', 'stop sign', 'wetsuit', 'green and black', 'foreground', 'stands', 'china airlines', 'flower', '300', 'on bench', 'plaster', 'phones', 'sailboat', 'apples', 'road', 'recently', 'cones', 'cactus', 'rice', 'vegetarian', 'donut', 'ketchup', 'police', 'mirror', 'rock', 'meat', 'blinds', 'cell phones', 'china', 'rust', '7:25', 'stone', 'vans', 'middle', 'eagle', '9:30', 'ping pong', 'microwave', 'gmc', 'umbrellas', 'wrist', 'laughing', 'boy', 'next to toilet', 'tabby', 'petting', 'south', '40', 'checkered', 'slow', 'cardboard', 'windows', 'croissant', 'plain', 'cookie', 'on ground', 'low', 'water bottle', 'goggles', 'turkey', 'shut', 'kite flying', 'bowl', 'smile', 'in bowl', 'bush', 'cloudy', 'top left', 'skateboarder', 'coca cola', 'pan', 'drinking', 'short', 'floor', 'thanksgiving', 'radio', 'drink', 'on toilet', 'bike rack', 'bleachers', 'train tracks', 'horses', 'far', 'top', 'toilet', 'in water', 'private', 'nature', 'commercial', 'stroller', 'power', 'stuffed animals', 'uniforms', 'japan', 'faucet', 'green and orange', 'corn', 'white and yellow', 'mercedes', 'in sky', 'tarp', 'indian', 'counter', 'multicolored', 'polar', 'go', 'no number', 'swimming', 'bridle', 'cowboy', 'olives', 'pizza cutter', 'british airways', 'nighttime', 'australia', 'tiles', 'pug', 'wicker', 'british', 'us airways express', 'burton', 'christmas tree', 'napkin', 'writing', 'rocks', 'hello kitty', 'gold', 'fan', 'skateboards', 'day', 'on floor', '2008', 'dark', 'flying kites', 'rural', 'olympics', 'bmw', '34', 'denim', 'typing', 'for fun', 'steel', 'watching tv', 'driver', 'grapes', 'f', 'angels', 'roof', 'handlebars', 'train station', 'public', 'oak', 'sleeping', 'canada', 'air canada', 'on top', 'tired', 'blonde', 'cups', 'little', 'adidas', '10 feet', 'white and gray', 'leaf', 'fisheye', 'forest', 'war', 'octagon', 'raspberry', 'helmets', 'united states', '29', 'noodles', 'van', 'long', 'traveling', 'luggage', 'airport', 'single', 'pitching', 'dugout', 'garbage', 'happiness', 'cigarette', 'on tower', 'antelope', 'graffiti', 'skating', 'on road', 'curved', 'washington', 'ski lift', 'athletics', 'brace', 'squatting', 'catching', 'batter', 'batting', 'game', 'towards', '33', 'sliding', 'makeup', 'japanese', 'person', 'pirates', 'plaid', 'rose', 'daytime', 'keyboard', 'surfboards', 'hummingbird', 'ollie', '11:30', 'clock tower', 'san francisco', 'stopping', 'tags', 'samsung', 'computers', 'cabinets', 'talking', 'asparagus', '5 years', 'adult', 'rabbit', 'empty', 'softball', '1st', 'playing', 'chairs', 'farm', 'cross country', 'dump truck', 'women', 'snowboarder', 'tall', 'monkey', 'fire', 'books', 'cessna', 'chandelier', 'dunkin donuts', 'beans', 'relish', 'parking meter', 'ducks', 'sandals', 'doughnut', 'lighthouse', 'yacht', 'german shepherd', 'raw', 'chain', '2 feet', 'pedestal', 'mutt', 'race', 'poor', 'cat and dog', 'station', 'printer', 'daisies', 'front', 'gravel', 'grassy', 'pigeons', 'dogs', 'in car', 'life', 'wii remotes', 'suv', 'leather', 'bottom right', 'peace', 'blanket', 'frisbees', '12:30', 'scooter', 'going', 'analog', 'america', 'pitbull', 'relaxing', 'paddle boarding', 'white and pink', 'ride', 'side', 'on desk', 'on chair', '2012', 'multi', 'straight', 'big ben', 'closed', '3 feet', 'waves', 'buoy', 'trash can', 'medium', 'very tall', 'yamaha', 'sunlight', 'hit ball', 'dry', 'coke', 'gym', 'orange and black', 'center', 'rope', 'flip flops', 'siamese', 'crafts', 'color', 'italian', 'playing frisbee', 'skate park', 'orange juice', 'windowsill', 'thumb', 'pie', 'toast', 'no hat', 'benches', 'diamond', 'blender', 'avocado', 'television', 'speakers', 'pony', 'baseball field', 'pavement', 'not there', 'diamonds', '4 feet', 'goalie', 'soccer ball', 'runway', 'video game', 'gaming', 'casual', 'green and white', 'toilet brush', 'working', 'pickup', 'girls', 'remotes', 'pasta', 'hood', 'braves', 'skier', 'motorola', '17', 'b', '100', 'hospital', 'wagon', 'milk', 'ferry', 'rainbow', 'on bed', 'toward', '1:30', '19', 'mercedes benz', 'supreme', 'thin', 'platform', 'thai', 'storage', 'swan', 'peach', '10:05', 'dome', 'chiquita', '2:00', 'mountain dew', '23', 'knives', 'street sign', 'on beach', 'playing wii', 'stickers', 'yogurt', 'on grass', '9:45', 'gatorade', 'umpire', '37', 'desktop', 'desserts', 'main', 'boston', 'fell', 'top right', 'case', 'asleep', 'over', 'grapefruit', 'breakfast', 'headphones', 'freight', 'cup', 'sweatband', 'nobody', 'lamps', '9:25', 'scarf', 'on fridge', 'moving', 'fresh', 'blue jay', 'chihuahua', 'ceramic', 'mushrooms', 'on plate', 'human', 'power lines', 'hotel', 'map', 'earring', 'boarding', 'warm', 'napkins', 'brown and black', 'broom', 'basketball', 'papers', 'sad', 'kickstand', '60', 'shoulder', 'sleep', 'footprints', 'tunnel', '1990', 'hats', '6 inches', 'ham', 'bacon', 'church', '53', 'pineapple', 'at camera', 'red bull', 'pilot', 'tattoo', 'work', 'polar bear', 'taking off', 'website', '22', '4:00', 'coffee maker', 'fast', 'fur', 'rubber', 'tongs', 'german', 'germany', 'toy', '3:20', 'calm', 'pots', 'fruits', '9:20', 'drawer', 'oven', 'soup', 'stove', 'heels', 'wind', 'island', 'blood', 'leg', 'theater', 'tennis racquet', '21', 'gothic', '2:35', 'wii remote', 'turning', '20 feet', 'ears', 'fun', 'to right', 'child', 'fly', 'head', 'drywall', 'pier', 'feeding giraffe', 'in vase', 'burger', 'easter', 'onion', 'uniform', 'guitar', 'time', 'tomatoes', 'ship', 'tulips', 'glaze', 'tent', 'market', 'bandana', 'still', "don't know", 'piano', 'mouth', 'run', 'sparrow', 'lines', 'vest', '1950', 'jet', 'sepia', '2015', 'busy', 'dessert', '75', 'finch', 'pastries', 'outdoors', 'bakery', 'clean', 'ipod', 'tablecloth', 'looking at phone', 'in front', 'food truck', 'face', 'swinging', 'safari', '500', 'volkswagen', '2010', 'shelves', 'riding horses', '2016', 'towels', 'lemon', 'straw', 'bamboo', '5 feet', 'hardwood', 'h', 'meter', 'charging', 'bald', 'caucasian', 'man on left', 'stand', '27', 'dining room', 'sandwiches', '32', 'apartment', 'tower', 'virgin', 'out', 'white and red', "i don't know", 'chains', 'legs', 'goats', 's', 'dresser', 'camper', 'half', 'decorative', 'hawaiian', 'wheel', 'florida', 'reds', 'washington dc', 'moon', 'conference', 'screen', 'controller', 'robin', 'men', 'protection', 'harley davidson', 'coal', 'mustache', 'smiling', 'pedestrians', 'me', 'tray', 'monitor', 'bell', 'landscape', 'club', 'toothpick', 'seagulls', 'bowtie', 'lake', 'steam', 'surf', 'baseball glove', 'blinders', 'woods', 'shearing', 'dad', 'mixer', 'pot', 'blending', 'identification', 'owl', 'wine glass', 'new york', 'yarn', 'tennis ball', 'ice cream', 'chevrolet', 'shirt and tie', 'taking selfie', 'blue and green', "he isn't", 'cutting cake', 'east', 'setting', '7 eleven', 'stars', 'jockey', 'jacket', 'book', 'gray and white', 'pen', 'red white blue', 'above', 'alaska', 'tongue', 'feathers', 'k', 'camping', 'corner', 'away', 'ski', 'texas', 'fire truck', 'sailboats', 'jump', 'walk', 'spray paint', 'loading', 'united', '1000', 'roman numerals', 'surprise', '3rd', 'first', 'side of road', 'dodgers', 'airplanes', 'unsure', 'russian', 'wet', '5 star', 'blankets', 'natural', 'across street', 'smartphone', 'duck', 'sausage', 'paris', 'newspaper', 'pants', 'spices', 'pillow', 'to left', 'snowboards', 'colgate', 'on elephant', 'string', 'horns', '2:40', "men's", 'cobblestone', 'regular', 'staring', '28', 'barber shop', 'cut', 'x', 'above sink', 'above stove', 'dishes', 'dalmatian', 'watching', 'glazed', '5:25', 'messy', 'wallet', 'tuna', 'grilled', 'french', 'green and blue', 'sunflowers', 'wool', 'cabinet', 'shell', 'foil', 'bottles', 'bar', 'king', 'paper towels', 'friends', 'beagle', 'school bus', 'laptops', 'snowing', 'cement', 'pc', 'accident', 'stuffed animal', 'balance', 'white and black', 'cleats', 'on sink', 'pool', 'mom', 'downtown', 'asian', 'heater', 'bathing', '193', 'against wall', 'canopy', 'berries', 'military', 'pickle', 'clams', 'seafood', 'in box', 'boats', 'lizard', 'lemonade', 'm', 'soft', 'country', 'for sale', 'arm', 'listening', 'curly', 'play tennis', 'hands', 'cereal', 'blue and red', 'robe', 'soap', 'trains', 'throwing frisbee', 'smoking', 'india', 'headband', 'not very', 'westin', 'serve', 'bicycles', "can't tell", 'visibility', 'ana', 'reins', 'rodeo', 'riding motorcycle', 'mexico', 'mother', 'african', 'left and right', 'button', 'earrings', 'blackberry', 'cell', '10:00', 'harness', 'pillows', 'vegetable', 'tablet', 'fern', 'cats', 'golden retriever', 'goat', 'tractor', "valentine's day", 'hearts', 'khaki', 'man on right', "mcdonald's", 'arriving', 'husky', 'on skateboard', 'vases', 'coat', 'beanie', 'coming', 'granite', 'sports', 'leash', 'balls', 'blurry', 'baseball bat', 'mug', 'eiffel tower', 'worms', 'trash', 'terrier', 'painting', 'rooster', '42', 'jones', 'state farm', 'balloon', 'trunk', 'coach', 't', 'playing game', 'fireplace', 'behind clouds', 'uphill', 'motocross', 'sony', 'magazine', 'kitesurfing', 'catching frisbee', 'catch frisbee', 'bud light', 'fighting', '1 on left', 'very old', 'hallway', 'lexus', 'wii controller', '5:45', 'catholic', 'muffin', 'traffic light', 'grocery', 'shelf', '2:25', 'honey', 'plants', 'oars', 'foggy', "nathan's", 'cord', 'yard', '48', 'chimney', 'calico', 'suits', 'sideways', 'animals', 'black and blue', 'bikini', 'photographer', 'queen', '1:00', '12:05', 'horseback riding', 'awake', 'bunny', '12:00', 'continental', 'rye', 'family', 'lots', 'owner', 'palm tree', 'design', 'far right', 'tire', 'younger', 'biking', 'giants', 'caramel', 'polo', 'emirates', 'magnets', 'mat', 'ivy', 'cakes', 'bob', 'asia', 'graduation', 'cauliflower', 'c', 'rough', 'air', 'windy', 'victoria', 'trick', 'labrador', 'on left', 'yellow and green', 'butterfly', 'fake', 'on napkin', 'bricks', 'wine glasses', 'detroit', "man's", 'parsley', 'art', 'subway', 'wave', 'placemat', 'hydrant', 'sofa', 'pigeon', 'all', 'branches', 'plant', 'to eat', 'zucchini', 'feta', 'mouse pad', 'cloud', 'toilet paper', 'pumpkin', 'rowing', 'handicap', 'seeds', 'fly kite', 'chicago', 'marble', 'frame', '150', 'rocky', 'sauce', "it's not", 'control', 'high chair', 'playstation', 'xbox', 'roman', 'land', '1:35', 'lifeguard', 'size', 'bull', 'goose', '8 feet', 'recessed', 'statue', 'index', 'phillies', 'strike', 'mirrors', 'pointing', 'farmer', 'collie', 'motorbike', 'lanes', 'bikes', 'gas station', 'logs', 'smaller', 'desert', 'yield', 'flags', 'stool', 'kitten', 'doll', 'daffodils', 'letters', 'dishwasher', 'nuts', '2013', 'persian', 'swim trunks', 'deep', 'doubles', 'in field', 'wristband', 'wheels', 'baking', '4:15', '11:00', 'ear', '2007', '51', 'frog', 'boogie board', 'hungry', 'by window', 'ambulance', 'pigtails', 'microsoft', 'on man', 'laying down', '3:00', 'taxi', 'pedestrian', 'landing', 'numbers', '38', 'stones', 'clocks', 'new', 'picnic', 'fog', 'buffalo', 'under armour', 'orioles', 'bags', 'golden gate', 'castle', 'canoe', 'selfie', 'cream', 'floating', 'indoor', 'antique', 'aluminum', 'peas', 'sun hat', 'on right', 'flour', 'under sink', 'fashion', 'fedora', 'shells', '1 hour', 'puppy', 'motor', '120', 'sail', 'mexican', 'dead end', 'paddle', 'shop', 'boxing', 'birthday cake', 'chalk', 'style', 'nissan', 'sticker', 'north face', 'squash', 'not sure', 'seat', 'himself', 'circles', 'san diego', 'kia', 'mattress', 'obama', 'lamb', 'american flag', 'climbing', 'skull and crossbones', 'roast beef', 'visor', 'double', '52', 'high', 'stagecoach', 'cart', 'feeding', 'eaten', 'cone', 'smoothie', 'golf', 'colorado', 'electronics', '5:15', 'bowling', 'players', 'ketchup and mustard', 'styrofoam', '6 feet', 'hawk', 'cheddar', 'arabic', 'shower curtain', 'army', 'salmon', 'hanging', 'whole', 'behind fence', 'bars', 'moss', 'no dog', 'traffic', 'r', 'countryside', 'directions', 'cooked', 'aa', '6:45', '4 way', 'stripe', 'brand', 'baseball player', 'bunk', 'coleslaw', 'europe', 'dead', 'arch', 'scrambled', 'clothing', 'closet', 'egg', 'suitcases', 'indoors', 'tires', 'lilies', 'cafe', 'toothpaste', 'in background', 'tarmac', 'painted', 'sunset', 'orange and yellow', 'zebra and giraffe', 'ladybug', 'hills', 'tail', 'couple', 'kawasaki', 'smooth', 'powdered sugar', 'pedestrian crossing', 'french fries', 'teeth', 'ribbon', 'saddle', 'on train', '39', 'curb', 'tow', 'shark', 'white and orange', 'gravy', 'curtain', 'lime', 'skull', 'crossing', 'peacock', 'neck', 'hit', 'dragon', 'tissues', 'basil', 'waving', 'helicopter', 'mud', 'us', 'red and gray', 'sunflower', 'wallpaper', '11:20', 'seattle', 'bookshelf', 'looking', '1 inch', 'harley', 'urinal', 'navy', 'fedex', 'rays', 'deck', 'coaster', '1:20', '4:20', '5:00', 'jp morgan', 'palm trees', 'tub', 'pens', '2 people', 'speaker', 'hamburger', 'green beans', "it isn't", '10:20', 'buildings', 'on shelf', 'orange and blue', '90', 'north america', 'arrow', 'news', 'tropicana', 'formal', 'in grass', 'thumbs up', 'clip', 'tennis player', 'pastry', 'nose', 'pacifier', '11:35', 'different teams', 'cardinals', 'bagel', 'huge', 'out of focus', 'cook', 'wheat', 'photo', 'sedan', 'lanyard', 'pink and white', 'sesame', 'space', 'warning', 'snowy', 'tater tots', 'tropical', 'grandfather', 'mac', 'pajamas', '350', 'casserole', 'pelican', '2009', 'clydesdale', 'tow truck', 'belt', 'west', 'omelet', 'heavy', 'crown', 'in corner', 'hexagon', 'mound', 'iris', 'g', '2:15', '3:10', 'drawing', 'only', 'washing', 'nokia', 'windsor', 'icing', 'several', 'no smoking', 'kayak', 'frosting', 'jetblue', 'shoe', 'britain', 'ties', 'bank', 'camouflage', 'privacy', 'bib', 'blue and gray', 'looking out window', 'falling', 'bucket', 'cupcakes', 'throw ball', 'garden', 'almonds', 'starbucks', 'all way', 'home plate', 'base', 'toys', '1 in front', 'foot', 'california', 'towing', 'cheesecake', 'bushes', 'bow tie', 'down street', '2011', 'police officer', 'windmill', 'taking pictures', 'cleaning', 'on pole', 'main street', 'catch ball', 'mario', 'track', 'garage', "they aren't", 'tents', 'tattoos', '2:45', 'wheelchair', 'money', 'top hat', 'willow', 'brushing hair', '80', 'green and red', 'barrier', 'hiking', 'tank top', 'lufthansa', 'menu', 'forehand', 'wii controllers', 'hundreds', 'water ski', 'furniture', 'paisley', 'pizza hut', 'hill', 'prom', 'tiara', 'students', 'information', 'hazy', 'canon', 'bird feeder', 'crane', 'dr pepper', 'logitech', '2:10', 'all of them', 'utensils', 'telephone', 'converse', 'bone', 'jeep', 'nursing', 'krispy kreme', 'ranch', 'polka dots', 'railroad crossing', 'shirts', 'feeder', 'above toilet', 'unclear', 'below', '43', 'spoons', 'calendar', 'mint', 'spiderman', 'lg', 'concert', 'coats', 'lady', 'dodge', 'flat screen', '10:30', 'music', 'polar bears', 'riding horse', 'cookies', 'hot', 'behind', 'dole', '26', 'pans', 'love', 'winnie pooh', 'copyright', '2 hours', 'snowsuit', 'kissing', 'backhand', 'swans', 'nintendo', 'direction', 'waiting', 'mohawk', 'rail', 'hoodie', 'feet', '106', '10:55', 'coins', 'mitt', 'room', 'adults', 'cameras', 'marker', 'sled', 'conductor', 'farmers market', 'toiletries', 'blue and black', 'sprite', 'bank of america', 'heat', 'emergency', 'hard', '41', '6:00', 'in his hand', 'cluttered', 'grizzly', 'not', 'in hand', 'under table', 'd', 'hitting ball', 'photography', 'intersection', 'backwards', 'crocs', 'chips', 'harry potter', 'hawaii', 'half full', 'carriage', 'curious', 'geese', 'pork', 'l', 'sidecar', 'penguin', 'to see', 'pocket', 'steps', 'cubs', 'junk', 'deer', 'ottoman', 'salt', 'condiments', '1:55', 'post', 'bulldog', 'notebook', 'no cat', 'jets', 'knee pads', 'throw frisbee', 'drinks', 'leopard', 'grape', 'wine tasting', 'baskets', 'santa hat', 'chest', 'sewing', 'on car', 'sony ericsson', 'peeing', 'tour', 'fire extinguisher', 'lemons', 'wiimote', 'guitar hero', 'stopped', 'library', 'blue and pink', 'choppy', 'sailing', 'brush', 'jelly', 'dairy queen', 'shaking hands', 'ge', 'tigers', 'tokyo', 'buses', 'pink and blue', 'singles', 'iron', "don't walk", 'classroom', 'harbor', 'residential', 'joshua', 'uk', 'burgers', 'lace', 'overalls', 'ram', 'dancing', '47', 'shed', 'lid', "he's not", 'amtrak', 'ostrich', 'bathtub', '2:50', 'mall', 'slow down', 'hammer time', 'octopus', 'crib', 'broadway', 'pottery', 'wavy', 'holding phone', 'tusks', 'dining', 'packing', 'thomas', 'budweiser', 'beijing', '11:10', 'wide', 'slope', 'black and gray', 'chili', 'siblings', 'kayaking', 'captivity', 'rack', 'panda', 'pelicans', 'genetics', 'not in service', 'v', 'on laptop', 'gone', 'tying tie', 'scale', 'lily', 'cool', 'n', 'toilets', 'tree branch', 'copper', '870', 'shopping', 'batman', 'black and brown', 'legos', 'drinking water', 'burrito', 'spiral', 'ibm', 'tools', 'cherries', 'maple leaf', 'vines', 'sushi', 'baker', 'globe', 'wireless', 'compaq', 'do not enter', '1:05', 'advertisement', 'movement', 'model', 'hammock', 'swing', 'sheet', 'google', 'right 1', 'haircut', 'exit', 'tim hortons', 'lego', 'cucumbers', 'potato', 'egg salad', 'controllers', 'upside down', 'lion', 'camo', 'dirt bike', 'playing video games', 'crates', 'horizontally', 'plunger', 'radiator', 'in basket', 'cap', 'living', 'briefcase', 'ascending', 'flip phone', '101', 'gun', 'foam', 'serious', 'pancakes', 'heineken', 'driveway', 'cleaner', 'delivery', 'commuter', 'apple and banana', 'chase', 'trucks', 'trunks', '64', 'slacks', 'skiers', 'carrot cake', 'holding', 'surfers', 'horse racing', 'orchid', 'leaving', 'pitch', 'crest', 'miami', 'bus station', 'take off', 'diesel', 'pm', 'wetsuits', '7:35', 'tie dye', 'baked', 'life jacket', 'grilled cheese', 'meatballs', 'monster', 'smiley face', 'keys', 'straight ahead', 'badminton', 'end', '5:05', '10:50', 'each other', 'weeds', 'tinkerbell', 'rottweiler', 'apartments', 'sweatshirt', 'shore', 'switzerland', '65', 'jar', 'skate', 'raspberries', 'singing', 'on bus', 'carnations', 'descending', 'hsbc', 'space needle', 'skatepark', 'kenmore', 'db', "baby's breath", 'shelter', '1980', 'no left turn', '9:05', 'pipes', 'donkey', 'mitsubishi', 'tell time', 'outfield', 'flip', 'stadium', 'heinz', 'distance', 'macaroni', 'on plane', 'triumph', '4:50', 'on stove', 'shih tzu', 'fried', 'sunrise', '2nd', 'suzuki', 'traffic lights', 'hitting', 'healthy', 'tulip', 'right side', 'on sign', 'maroon', '5:40', 'michigan', 'close', 'license plate', 'sniffing', '1:15', 'cardinal', 'older', 'nest', 'colored', 'in back', 'formica', 'roundabout', 'drain', 'drying', '11:25', 'westjet', 'us air force', 'comcast', 'soon', 'futon', 'braid', 'us airways', '49', 'red velvet', 'sas', 'cosmo', '100 year party ct', 'in cabbage town']
class _VQA_split1(torch.utils.data.Dataset):
def __init__(self, root_dir, split, classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
# NOTE: so tricky
if root_dir.endswith('vv'):
root_dir = root_dir[0: -2]
self.full_label_dim = 700
else:
self.full_label_dim = None
self.root_dir = root_dir
self.data = read_json(os.path.join(root_dir, 'label1.json'))
n = int(len(self.data) * 0.8)
if split == 'train':
self.data = self.data[: n]
elif split in ('test', 'val'):
self.data = self.data[n: ]
# logger.info(f'Loaded {len(self.data)} samples for {split} split')
ignore_classes_idx = [classes.index(c) for c in ignore_classes]
new_self_data = []
for i, d in enumerate(self.data):
should_ignore = False
for label_idx in d[2]:
if label_idx in ignore_classes_idx:
should_ignore = True
break
if not should_ignore:
# full_label = [0] * (len(classes) - len(ignore_classes))
new_labels = [idx_map[l] if idx_map is not None else l for l in d[2]]
# for l in zip(new_labels, d[3]):
# full_label[l[0]] = l[1]
new_self_data.append(
(d[0], d[1], new_labels, d[3])
)
self.data = new_self_data
logger.info(f'Loaded {len(self.data)} samples for {split} split (after ignoring some classes)')
#self.processor = ViltProcessor.from_pretrained('dandelin/vilt-b32-mlm')
from transformers import AutoTokenizer,AutoProcessor,GitProcessor
self.processor = AutoProcessor.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained',model_max_length = 30)
self.classes = classes
self.ignore_classes = ignore_classes
self.idx_map = idx_map
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
cv2.setNumThreads(0)
image_id, question, labels, scores = self.data[idx]
image_path = os.path.join(self.root_dir, f'train2014/COCO_train2014_{str(image_id).zfill(12)}.jpg')
image = Image.open(image_path).convert('RGB')
image = Resize((224, 224))(image)
#encoding = self.processor(image, question, padding='max_length', return_tensors="pt")
encoding = self.processor(images = image,text = question,return_tensors = "pt",padding = "max_length")
# label = self.processor(text="2", return_tensors="pt").input_ids
# print(label)
for k in ['input_ids', 'attention_mask', 'pixel_values']:
encoding[k] = encoding[k][0]
label1 = 0
max = 0
text = '1'
full_label = [0] * (len(self.classes) if self.full_label_dim is None else self.full_label_dim)
for label, score in zip(labels, scores):
if score > max:
label1 = self.processor(text = all_classes[label],return_tensors = "pt",padding = 'max_length').input_ids
max = score
text = all_classes[label]
full_label[label] = score
full_label = torch.FloatTensor(full_label)
inputs = encoding
inputs["labels"] = label1
inputs['labels'] = inputs['labels'][0]
return encoding, full_label
#return encoding, inputs , text#这里的这个text就是文本答案
from data.datasets.visual_question_answering.generate_c_image.imagenet_c import corrupt
class _VQA_split1_c(torch.utils.data.Dataset):
def __init__(self, root_dir, split, corruption_name, classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
# NOTE: so tricky
if root_dir.endswith('vv'):
root_dir = root_dir[0: -2]
self.full_label_dim = 700
else:
self.full_label_dim = None
self.root_dir = root_dir
self.data = read_json(os.path.join(root_dir, 'label1.json'))
self.corruption_name = corruption_name
n = int(len(self.data) * 0.8)
if split == 'train':
self.data = self.data[: n]
elif split in ('test', 'val'):
self.data = self.data[n: ]
logger.info(f'Loaded {len(self.data)} samples for {split} split')
ignore_classes_idx = [classes.index(c) for c in ignore_classes]
new_self_data = []
for i, d in enumerate(self.data):
should_ignore = False
for label_idx in d[2]:
if label_idx in ignore_classes_idx:
should_ignore = True
break
if not should_ignore:
# full_label = [0] * (len(classes) - len(ignore_classes))
new_labels = [idx_map[l] if idx_map is not None else l for l in d[2]]
# for l in zip(new_labels, d[3]):
# full_label[l[0]] = l[1]
new_self_data.append(
(d[0], d[1], new_labels, d[3])
)
self.data = new_self_data
logger.info(f'Loaded {len(self.data)} samples for {split} split (after ignoring some classes)')
#self.processor = ViltProcessor.from_pretrained('dandelin/vilt-b32-mlm')
from transformers import AutoTokenizer,AutoProcessor
self.processor = AutoProcessor.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained',model_max_length = 30)
self.classes = classes
self.ignore_classes = ignore_classes
self.idx_map = idx_map
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
cv2.setNumThreads(0)
image_id, question, labels, scores = self.data[idx]
image_path = os.path.join(self.root_dir, f'train2014/COCO_train2014_{str(image_id).zfill(12)}.jpg')
image = Image.open(image_path).convert('RGB')
image = Resize((224, 224))(image)
# key
image = Image.fromarray(corrupt(np.array(image), severity=5, corruption_name=self.corruption_name))
#encoding = self.processor(image, question, padding='max_length', return_tensors="pt")
encoding = self.processor(images = image, text = question,return_tensors = "pt",padding = "max_length")
for k in ['input_ids', 'attention_mask', 'pixel_values']:
encoding[k] = encoding[k][0]
label1 = 0
max = 0
text = '1'
full_label = [0] * (len(self.classes) if self.full_label_dim is None else self.full_label_dim)
for label, score in zip(labels, scores):
if score > max:
labels = self.processor(text = all_classes[label],return_tensors = "pt",padding = "max_length").input_ids
max = score
text = all_classes[label]
full_label[label] = score
full_label = torch.FloatTensor(full_label)
inputs = encoding
inputs["labels"] = label1
inputs['labels'] = inputs['labels'][0]
return encoding, full_label
#return encoding , inputs , text
class _VQAv2_split1(torch.utils.data.Dataset):
def __init__(self, root_dir, split, classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
# NOTE: so tricky
if root_dir.endswith('vv'):
root_dir = root_dir[0: -2]
self.full_label_dim = 700
else:
self.full_label_dim = None
self.root_dir = root_dir
self.data = read_json(os.path.join(root_dir, 'label1.json'))
n = int(len(self.data) * 0.8)
if split == 'train':
self.data = self.data[: n]
elif split in ('test', 'val'):
self.data = self.data[n: ]
# logger.info(f'Loaded {len(self.data)} samples for {split} split')
ignore_classes_idx = [classes.index(c) for c in ignore_classes]
new_self_data = []
for i, d in enumerate(self.data):
should_ignore = False
for label_idx in d[2]:
if label_idx in ignore_classes_idx:
should_ignore = True
break
if not should_ignore:
# full_label = [0] * (len(classes) - len(ignore_classes))
new_labels = [idx_map[l] if idx_map is not None else l for l in d[2]]
# for l in zip(new_labels, d[3]):
# full_label[l[0]] = l[1]
new_self_data.append(
(d[0], d[1], new_labels, d[3])
)
self.data = new_self_data
logger.info(f'Loaded {len(self.data)} samples for {split} split (after ignoring some classes)')
self.processor = ViltProcessor.from_pretrained('dandelin/vilt-b32-mlm')
#self.processor = ViltProcessor.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/vilt',model_max_length = 40)
self.classes = classes
self.ignore_classes = ignore_classes
self.idx_map = idx_map
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
cv2.setNumThreads(0)
image_id, question, labels, scores = self.data[idx]
image_path = os.path.join(self.root_dir, f'train2014/COCO_train2014_{str(image_id).zfill(12)}.jpg')
image = Image.open(image_path).convert('RGB')
image = Resize((224, 224))(image)
encoding = self.processor(image, question, padding='max_length', return_tensors="pt")
for k in ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values', 'pixel_mask']:
encoding[k] = encoding[k][0]
full_label = [0] * (len(self.classes) if self.full_label_dim is None else self.full_label_dim)
for label, score in zip(labels, scores):
full_label[label] = score
full_label = torch.FloatTensor(full_label)
return encoding, full_label
from data.datasets.visual_question_answering.generate_c_image.imagenet_c import corrupt
class _VQAv2_split1_c(torch.utils.data.Dataset):
def __init__(self, root_dir, split, corruption_name, classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
# NOTE: so tricky
if root_dir.endswith('vv'):
root_dir = root_dir[0: -2]
self.full_label_dim = 700
else:
self.full_label_dim = None
self.root_dir = root_dir
self.data = read_json(os.path.join(root_dir, 'label1.json'))
self.corruption_name = corruption_name
n = int(len(self.data) * 0.8)
if split == 'train':
self.data = self.data[: n]
elif split in ('test', 'val'):
self.data = self.data[n: ]
logger.info(f'Loaded {len(self.data)} samples for {split} split')
ignore_classes_idx = [classes.index(c) for c in ignore_classes]
new_self_data = []
for i, d in enumerate(self.data):
should_ignore = False
for label_idx in d[2]:
if label_idx in ignore_classes_idx:
should_ignore = True
break
if not should_ignore:
# full_label = [0] * (len(classes) - len(ignore_classes))
new_labels = [idx_map[l] if idx_map is not None else l for l in d[2]]
# for l in zip(new_labels, d[3]):
# full_label[l[0]] = l[1]
new_self_data.append(
(d[0], d[1], new_labels, d[3])
)
self.data = new_self_data
logger.info(f'Loaded {len(self.data)} samples for {split} split (after ignoring some classes)')
self.processor = ViltProcessor.from_pretrained('dandelin/vilt-b32-mlm')
#self.processor = ViltProcessor.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/vilt',model_max_length = 40)
self.classes = classes
self.ignore_classes = ignore_classes
self.idx_map = idx_map
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
cv2.setNumThreads(0)
image_id, question, labels, scores = self.data[idx]
image_path = os.path.join(self.root_dir, f'train2014/COCO_train2014_{str(image_id).zfill(12)}.jpg')
image = Image.open(image_path).convert('RGB')
image = Resize((224, 224))(image)
# key
image = Image.fromarray(corrupt(np.array(image), severity=5, corruption_name=self.corruption_name))
encoding = self.processor(image, question, padding='max_length', return_tensors="pt")
for k in ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values', 'pixel_mask']:
encoding[k] = encoding[k][0]
full_label = [0] * (len(self.classes) if self.full_label_dim is None else self.full_label_dim)
for label, score in zip(labels, scores):
full_label[label] = score
full_label = torch.FloatTensor(full_label)
return encoding, full_label
class _VQAv2_split2(torch.utils.data.Dataset):
def __init__(self, root_dir, split, classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
# NOTE: so tricky
if root_dir.endswith('vv'):
root_dir = root_dir[0: -2]
self.full_label_dim = 700
else:
self.full_label_dim = None
self.root_dir = root_dir
self.data = read_json(os.path.join(root_dir, 'label2.json'))
n = int(len(self.data) * 0.8)
if split == 'train':
self.data = self.data[: n]
elif split in ('test', 'val'):
self.data = self.data[n: ]
# logger.info(f'Loaded {len(self.data)} samples for {split} split')
ignore_classes_idx = [classes.index(c) for c in ignore_classes]
new_self_data = []
for i, d in enumerate(self.data):
should_ignore = False
for label_idx in d[2]:
if label_idx in ignore_classes_idx:
should_ignore = True
break
if not should_ignore:
# print(idx_map)
# full_label = [0] * (len(classes) - len(ignore_classes))
new_labels = [idx_map[l] if idx_map is not None else l for l in d[2]]
# for l in zip(new_labels, d[3]):
# full_label[l[0]] = l[1]
new_self_data.append(
(d[0], d[1], new_labels, d[3])
)
self.data = new_self_data
logger.info(f'Loaded {len(self.data)} samples for {split} split (after ignoring some classes)')
self.processor = ViltProcessor.from_pretrained('dandelin/vilt-b32-mlm')
self.classes = classes
self.ignore_classes = ignore_classes
self.idx_map = idx_map
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
cv2.setNumThreads(0)
image_id, question, labels, scores = self.data[idx]
image_path = os.path.join(self.root_dir, f'train2014/COCO_train2014_{str(image_id).zfill(12)}.jpg')
image = Image.open(image_path).convert('RGB')
image = Resize((224, 224))(image)
encoding = self.processor(image, question, padding='max_length', return_tensors="pt")
for k in ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values', 'pixel_mask']:
encoding[k] = encoding[k][0]
full_label = [0] * (len(self.classes) if self.full_label_dim is None else self.full_label_dim)
for label, score in zip(labels, scores):
full_label[label] = score
full_label = torch.FloatTensor(full_label)
return encoding, full_label
all_classes = ['net', 'pitcher', 'orange', 'yes', 'white', 'skiing', 'red', 'frisbee', 'brushing teeth', 'no', 'black and white', 'skateboard', '1', 'blue', 'green', 'motorcycle', 'gray', '2', 'purse', 'skis', 'poles', 'surfboard', 'dog', 'on', 'office', 'large', 'very big', 'laptop', 'vent', 'computer', 'black', 'bear', '3', 'wii', 'glasses', 'tree', 'eating', 'log', '5', 'left', 'living room', 'pink', 'right', 'railing', 'grass', 'wire', '10 years', 'knife', 'cake', 'banana', 'chef', 'vanilla', '4', 'outdoor', 'mustard', 'bun', 'clouds', 'dock', 'brown', 'silver', 'refrigerator', 'square', 'teddy', 'elm', 'stripes', 'baseball', 'catcher', 'beer', 'bottom', 'north', 'nike', 'yellow and white', 'morning', 'elephant', 'red and white', 'propeller', 'tan', 'wall', 'clock', 'table', '0', 'wood', 'christmas', 'spinach', 'thick', 'bag', 'leaves', 'necklace', '6', 'bathroom', 'shower', 'towel', 'solid', 'referee', 'wilson', 'e', '24', 'hat', 'grazing', 'sheep', '10', 'tag', 'spanish', 'hot dog', 'plate', 'lunch', 'butter', 'peppers', 'onions', 'very', 'pig', 'sweet', 'flowers', 'floral', 'yellow', 'window', '7', 'pizza', 'car', '', 'cargo', 'stairs', 'abstract', 'rug', 'baseball cap', 'texting', 'pole', 'crosswalk', 'nothing', 'urban', 'bus', 'light', 'afternoon', 'boat', 'cheese', 'paper', 'real', 'sun', 'birthday', 'words', 'inside', 'shadows', 'tomato', 'evergreen', '100 feet', 'trees', 'building', 'hay', 'ski pole', 'walking', 'ice', 'laundry', 'pepsi', 'good', '1:50', 'purple', '13', 'africa', 'teddy bears', 'socks', 'giraffe', 'soccer', 'blue and yellow', 'zebras', 'cupcake', 'broccoli', 'parking lot', 'cows', 'herding', 'on table', 'fish', 'nightstand', '50', 'overcast', 'cross', 'toaster oven', 'tile', '11:55', 'red and yellow', 'nowhere', 'hair dryer', 'truck', '11', 'people', 'rectangle', 'hot dogs', 'party', '12:55', 'apron', 'kitchen', 'cooking', 'ring', '1 way', 'stop', 'neither', 'many', 'female', 'brushing', 'tie', 'tennis racket', 'knife and fork', 'restaurant', 'cat', 'bed', 'sand', 'ocean', 'cold', 'kites', 'cumulus', 'standing', 'male', 'star', 'tracks', 'chocolate', 'round', 'fork and knife', 'yankees', 'pictures', 'dots', 'bird', 'parrot', 'red white and blue', 'man', 'metal', 'fence', 'snowboarding', 'pine', 'snow', 'shorts', 'swim', 'wine', 'brick', 'no parking', 'children', 'beef', 'phone', 'english', 'cell phone', 'pink and yellow', 'clear', 'watermelon', 'bedroom', 'fork', 'cow', 'rackets', 'tennis rackets', '8', 'collar', 'tennis', 'playing tennis', 'skirt', '30', 'polka dot', 'beach', 'horse', 'grill', 'african american', 'down', 'street', 'in air', 'sweater', 'yellow and blue', 'park', 'spectators', 'parasailing', '31', 'river', '55', 'shadow', 'winter', 'chicken', 'tea', 'evening', 'dusk', 'ski resort', 'helmet', 'bench', 'resting', 'elephants', 'southwest', 'usa', 'cars', 'town', 'bananas', 'umbrella', 'container', 'woman', 'on counter', 'salad', 'striped', 'motel', 'vertical', 'oranges', 'hot sauce', 'bottle', 'juice', 'eyes', 'ground', 'backpack', 'black and yellow', 'forward', 'jackets', '1 on right', 'green and yellow', 'playing baseball', 'riding', 'sitting', 'carrot', 'basket', 'seagull', 'ski poles', 'p', 'parking', 'street light', 'strap', 'bike', 'riding bike', 'poodle', 'shoes', 'carpet', 'lettuce', 'food', '1 foot', 'roses', 'mountains', 'scissors', 'camera', 'beige', 'beard', 'cutting', 'baby', 'tape', 'watch', 'never', 'taking picture', 'eggs', 'syrup', 'sandwich', 'water skiing', 'microphone', 'back', 'bears', 'donuts', 'w', 'sky', 'double decker', 'england', 'surfing', 'running', 'shirt', 'barn', 'weather vane', 'white and blue', 'fishing', 'bridge', 'los angeles', 'open', 'red sox', 'bat', 'plane', 'white and green', 'transportation', 'sunny', 'bus stop', 'city', 'brown and white', 'bicycle', 'crow', 'magazines', 'daisy', '14', 'old', 'curtains', 'snowboard', 'dinosaur', 'racing', 'asphalt', 'court', 'plastic', 'circle', 'red and blue', 'zebra', '12', 'biplane', 'shallow', 'brazil', 'logo', '2:20', 'electric', 'motion', 'toothbrushes', 'orange and white', '66', 'spoon', 'toyota', 'tennis shoes', '46', 'second', 'no 1', 'iphone', 'friend', 'apple', '15', 'tiger', 'glove', 'airplane', 'bow', 'air france', 'passengers', 'tv', 'on building', '3:55', 'victorian', 'steeple', 'happy', 'skateboarding', 'fruit', 'cutting board', 'cantaloupe', 'kiwi', 'sliced', 'heart', 'water', 'rainy', 'carrots', 'giraffes', 'eat', 'ramp', 'lab', 'field', 'horizontal', 'birds', 'home', 'shrimp', '12 feet', 'girl', 'modern', 'dell', 'boots', 'sunglasses', 'black and orange', 'yellow and black', 'gloves', 'hp', 'desk', 'both', 'sign', 'on street', '2000', 'cirrus', 'ceiling', 'fluorescent', 'up', '9', 'boys', 'playing soccer', 'american', 'passenger', 'turn', 'palm', 'wedding', 'branch', 'parrots', 'air force', 'on tracks', 'small', 'dirty', 'france', 'honda', '2.00', 'vase', 'flying', 'driving', 'tissue', 'protest', 'corona', 'twin', 'clothes', 't shirt', 'window sill', 'wild', 'noon', 'caution', 'spring', 'raining', 'cane', 'school', 'windsurfing', 'parachute', 'black and red', '25', 'background', 'toaster', 'planes', 'yellow and red', 'spatula', '10:10', 'ivory', 'train', 'highway', 'off', 'on track', 'electricity', 'italy', 'dinner', 'sink', 'squares', '5 ft', 'parked', 'store', 'dress', 'signs', 'football', 'rugby', 'stainless steel', 'dirt', 'blue and white', 'klm', 'house', 'unknown', 'ford', 'reading', 'chair', 'mountain', 'alive', 'water skis', 'picture', 'parade', 'trailer', 'boating', 'holding it', 'shade', 'cloth', 'candle', 'hose', 'hand', '3:25', 'on sidewalk', 'poster', 'downhill', 'reflection', 'summer', 'pickles', 'halloween', 'bats', 'london', 'zoo', 'surfer', 'racket', 'flickr', 'cutting hair', 'strawberries', 'mushroom', 'teddy bear', 'big', 'suitcase', 'veggie', 'pepper', 'houses', '70', 'toshiba', 'triangle', 'boxes', 'photograph', 'smoke', 'engine', 'camel', 'sidewalk', 'left 1', 'red and green', '4:35', 'on couch', 'candy', 'homemade', 'mouse', 'box', 'movie', '45', 'strawberry', 'fridge', 'full', 'vegetables', 'bright', 'play', 'remote', 'pond', 'savannah', 'celery', 'concrete', 'semi', 'scania', 'safety', 'posing', 'fabric', 'laying', 'couch', 'blueberries', 'handle', 'pipe', 'stick', 'steak', 'chain link', 'barbed wire', 'mozzarella', 'soda', 'fire hydrant', 'cat food', 'pepperoni', 'lot', 'licking', 'red and black', 'clay', 'tennis court', 'jumping', 'potatoes', 'toothbrush', 'kite', 'flying kite', 'broken', 'black and silver', 'lap', 'outside', '44', 'delta', 'greyhound', 'talking on phone', 'bad', 'kettle', '35', 'motorcycles', 'produce', 'steering wheel', '18', 'humans', 'coffee', 'white and brown', 'fall', 'bread', 'cherry', '4:30', 'flag', 'night', 'lamp', 'cucumber', 'porcelain', 'oval', 'museum', 'rain', 'sprinkles', '20', 'kids', 'bracelet', 'sneakers', 'mask', 'mickey mouse', 'very high', 'costume', 'cabbage', 'paint', 'lighting', 'young', 'air conditioner', 'wooden', 'board', 'beets', '16', 'lights', 'ladder', 'glass', 'fries', 'steamed', 'shepherd', 'cotton', 'suit', 'goatee', 'on his head', 'print', 'happy birthday', 'forks', 'travel', 'maple', '200', 'oil', 'jeans', 'can', 'chopsticks', 'on wall', 'construction', '36', 'chinese', 'festival', 'gas', 'throwing', 'circus', 'wires', 'not possible', 'plates', 'sugar', 'in', "women's", 'door', 'volleyball', 'serving', 'ponytail', 'business', 'decoration', 'santa', 'flat', 'barrel', '12:15', 'candles', 'free', 'hair', 'ball', 'stop sign', 'wetsuit', 'green and black', 'foreground', 'stands', 'china airlines', 'flower', '300', 'on bench', 'plaster', 'phones', 'sailboat', 'apples', 'road', 'recently', 'cones', 'cactus', 'rice', 'vegetarian', 'donut', 'ketchup', 'police', 'mirror', 'rock', 'meat', 'blinds', 'cell phones', 'china', 'rust', '7:25', 'stone', 'vans', 'middle', 'eagle', '9:30', 'ping pong', 'microwave', 'gmc', 'umbrellas', 'wrist', 'laughing', 'boy', 'next to toilet', 'tabby', 'petting', 'south', '40', 'checkered', 'slow', 'cardboard', 'windows', 'croissant', 'plain', 'cookie', 'on ground', 'low', 'water bottle', 'goggles', 'turkey', 'shut', 'kite flying', 'bowl', 'smile', 'in bowl', 'bush', 'cloudy', 'top left', 'skateboarder', 'coca cola', 'pan', 'drinking', 'short', 'floor', 'thanksgiving', 'radio', 'drink', 'on toilet', 'bike rack', 'bleachers', 'train tracks', 'horses', 'far', 'top', 'toilet', 'in water', 'private', 'nature', 'commercial', 'stroller', 'power', 'stuffed animals', 'uniforms', 'japan', 'faucet', 'green and orange', 'corn', 'white and yellow', 'mercedes', 'in sky', 'tarp', 'indian', 'counter', 'multicolored', 'polar', 'go', 'no number', 'swimming', 'bridle', 'cowboy', 'olives', 'pizza cutter', 'british airways', 'nighttime', 'australia', 'tiles', 'pug', 'wicker', 'british', 'us airways express', 'burton', 'christmas tree', 'napkin', 'writing', 'rocks', 'hello kitty', 'gold', 'fan', 'skateboards', 'day', 'on floor', '2008', 'dark', 'flying kites', 'rural', 'olympics', 'bmw', '34', 'denim', 'typing', 'for fun', 'steel', 'watching tv', 'driver', 'grapes', 'f', 'angels', 'roof', 'handlebars', 'train station', 'public', 'oak', 'sleeping', 'canada', 'air canada', 'on top', 'tired', 'blonde', 'cups', 'little', 'adidas', '10 feet', 'white and gray', 'leaf', 'fisheye', 'forest', 'war', 'octagon', 'raspberry', 'helmets', 'united states', '29', 'noodles', 'van', 'long', 'traveling', 'luggage', 'airport', 'single', 'pitching', 'dugout', 'garbage', 'happiness', 'cigarette', 'on tower', 'antelope', 'graffiti', 'skating', 'on road', 'curved', 'washington', 'ski lift', 'athletics', 'brace', 'squatting', 'catching', 'batter', 'batting', 'game', 'towards', '33', 'sliding', 'makeup', 'japanese', 'person', 'pirates', 'plaid', 'rose', 'daytime', 'keyboard', 'surfboards', 'hummingbird', 'ollie', '11:30', 'clock tower', 'san francisco', 'stopping', 'tags', 'samsung', 'computers', 'cabinets', 'talking', 'asparagus', '5 years', 'adult', 'rabbit', 'empty', 'softball', '1st', 'playing', 'chairs', 'farm', 'cross country', 'dump truck', 'women', 'snowboarder', 'tall', 'monkey', 'fire', 'books', 'cessna', 'chandelier', 'dunkin donuts', 'beans', 'relish', 'parking meter', 'ducks', 'sandals', 'doughnut', 'lighthouse', 'yacht', 'german shepherd', 'raw', 'chain', '2 feet', 'pedestal', 'mutt', 'race', 'poor', 'cat and dog', 'station', 'printer', 'daisies', 'front', 'gravel', 'grassy', 'pigeons', 'dogs', 'in car', 'life', 'wii remotes', 'suv', 'leather', 'bottom right', 'peace', 'blanket', 'frisbees', '12:30', 'scooter', 'going', 'analog', 'america', 'pitbull', 'relaxing', 'paddle boarding', 'white and pink', 'ride', 'side', 'on desk', 'on chair', '2012', 'multi', 'straight', 'big ben', 'closed', '3 feet', 'waves', 'buoy', 'trash can', 'medium', 'very tall', 'yamaha', 'sunlight', 'hit ball', 'dry', 'coke', 'gym', 'orange and black', 'center', 'rope', 'flip flops', 'siamese', 'crafts', 'color', 'italian', 'playing frisbee', 'skate park', 'orange juice', 'windowsill', 'thumb', 'pie', 'toast', 'no hat', 'benches', 'diamond', 'blender', 'avocado', 'television', 'speakers', 'pony', 'baseball field', 'pavement', 'not there', 'diamonds', '4 feet', 'goalie', 'soccer ball', 'runway', 'video game', 'gaming', 'casual', 'green and white', 'toilet brush', 'working', 'pickup', 'girls', 'remotes', 'pasta', 'hood', 'braves', 'skier', 'motorola', '17', 'b', '100', 'hospital', 'wagon', 'milk', 'ferry', 'rainbow', 'on bed', 'toward', '1:30', '19', 'mercedes benz', 'supreme', 'thin', 'platform', 'thai', 'storage', 'swan', 'peach', '10:05', 'dome', 'chiquita', '2:00', 'mountain dew', '23', 'knives', 'street sign', 'on beach', 'playing wii', 'stickers', 'yogurt', 'on grass', '9:45', 'gatorade', 'umpire', '37', 'desktop', 'desserts', 'main', 'boston', 'fell', 'top right', 'case', 'asleep', 'over', 'grapefruit', 'breakfast', 'headphones', 'freight', 'cup', 'sweatband', 'nobody', 'lamps', '9:25', 'scarf', 'on fridge', 'moving', 'fresh', 'blue jay', 'chihuahua', 'ceramic', 'mushrooms', 'on plate', 'human', 'power lines', 'hotel', 'map', 'earring', 'boarding', 'warm', 'napkins', 'brown and black', 'broom', 'basketball', 'papers', 'sad', 'kickstand', '60', 'shoulder', 'sleep', 'footprints', 'tunnel', '1990', 'hats', '6 inches', 'ham', 'bacon', 'church', '53', 'pineapple', 'at camera', 'red bull', 'pilot', 'tattoo', 'work', 'polar bear', 'taking off', 'website', '22', '4:00', 'coffee maker', 'fast', 'fur', 'rubber', 'tongs', 'german', 'germany', 'toy', '3:20', 'calm', 'pots', 'fruits', '9:20', 'drawer', 'oven', 'soup', 'stove', 'heels', 'wind', 'island', 'blood', 'leg', 'theater', 'tennis racquet', '21', 'gothic', '2:35', 'wii remote', 'turning', '20 feet', 'ears', 'fun', 'to right', 'child', 'fly', 'head', 'drywall', 'pier', 'feeding giraffe', 'in vase', 'burger', 'easter', 'onion', 'uniform', 'guitar', 'time', 'tomatoes', 'ship', 'tulips', 'glaze', 'tent', 'market', 'bandana', 'still', "don't know", 'piano', 'mouth', 'run', 'sparrow', 'lines', 'vest', '1950', 'jet', 'sepia', '2015', 'busy', 'dessert', '75', 'finch', 'pastries', 'outdoors', 'bakery', 'clean', 'ipod', 'tablecloth', 'looking at phone', 'in front', 'food truck', 'face', 'swinging', 'safari', '500', 'volkswagen', '2010', 'shelves', 'riding horses', '2016', 'towels', 'lemon', 'straw', 'bamboo', '5 feet', 'hardwood', 'h', 'meter', 'charging', 'bald', 'caucasian', 'man on left', 'stand', '27', 'dining room', 'sandwiches', '32', 'apartment', 'tower', 'virgin', 'out', 'white and red', "i don't know", 'chains', 'legs', 'goats', 's', 'dresser', 'camper', 'half', 'decorative', 'hawaiian', 'wheel', 'florida', 'reds', 'washington dc', 'moon', 'conference', 'screen', 'controller', 'robin', 'men', 'protection', 'harley davidson', 'coal', 'mustache', 'smiling', 'pedestrians', 'me', 'tray', 'monitor', 'bell', 'landscape', 'club', 'toothpick', 'seagulls', 'bowtie', 'lake', 'steam', 'surf', 'baseball glove', 'blinders', 'woods', 'shearing', 'dad', 'mixer', 'pot', 'blending', 'identification', 'owl', 'wine glass', 'new york', 'yarn', 'tennis ball', 'ice cream', 'chevrolet', 'shirt and tie', 'taking selfie', 'blue and green', "he isn't", 'cutting cake', 'east', 'setting', '7 eleven', 'stars', 'jockey', 'jacket', 'book', 'gray and white', 'pen', 'red white blue', 'above', 'alaska', 'tongue', 'feathers', 'k', 'camping', 'corner', 'away', 'ski', 'texas', 'fire truck', 'sailboats', 'jump', 'walk', 'spray paint', 'loading', 'united', '1000', 'roman numerals', 'surprise', '3rd', 'first', 'side of road', 'dodgers', 'airplanes', 'unsure', 'russian', 'wet', '5 star', 'blankets', 'natural', 'across street', 'smartphone', 'duck', 'sausage', 'paris', 'newspaper', 'pants', 'spices', 'pillow', 'to left', 'snowboards', 'colgate', 'on elephant', 'string', 'horns', '2:40', "men's", 'cobblestone', 'regular', 'staring', '28', 'barber shop', 'cut', 'x', 'above sink', 'above stove', 'dishes', 'dalmatian', 'watching', 'glazed', '5:25', 'messy', 'wallet', 'tuna', 'grilled', 'french', 'green and blue', 'sunflowers', 'wool', 'cabinet', 'shell', 'foil', 'bottles', 'bar', 'king', 'paper towels', 'friends', 'beagle', 'school bus', 'laptops', 'snowing', 'cement', 'pc', 'accident', 'stuffed animal', 'balance', 'white and black', 'cleats', 'on sink', 'pool', 'mom', 'downtown', 'asian', 'heater', 'bathing', '193', 'against wall', 'canopy', 'berries', 'military', 'pickle', 'clams', 'seafood', 'in box', 'boats', 'lizard', 'lemonade', 'm', 'soft', 'country', 'for sale', 'arm', 'listening', 'curly', 'play tennis', 'hands', 'cereal', 'blue and red', 'robe', 'soap', 'trains', 'throwing frisbee', 'smoking', 'india', 'headband', 'not very', 'westin', 'serve', 'bicycles', "can't tell", 'visibility', 'ana', 'reins', 'rodeo', 'riding motorcycle', 'mexico', 'mother', 'african', 'left and right', 'button', 'earrings', 'blackberry', 'cell', '10:00', 'harness', 'pillows', 'vegetable', 'tablet', 'fern', 'cats', 'golden retriever', 'goat', 'tractor', "valentine's day", 'hearts', 'khaki', 'man on right', "mcdonald's", 'arriving', 'husky', 'on skateboard', 'vases', 'coat', 'beanie', 'coming', 'granite', 'sports', 'leash', 'balls', 'blurry', 'baseball bat', 'mug', 'eiffel tower', 'worms', 'trash', 'terrier', 'painting', 'rooster', '42', 'jones', 'state farm', 'balloon', 'trunk', 'coach', 't', 'playing game', 'fireplace', 'behind clouds', 'uphill', 'motocross', 'sony', 'magazine', 'kitesurfing', 'catching frisbee', 'catch frisbee', 'bud light', 'fighting', '1 on left', 'very old', 'hallway', 'lexus', 'wii controller', '5:45', 'catholic', 'muffin', 'traffic light', 'grocery', 'shelf', '2:25', 'honey', 'plants', 'oars', 'foggy', "nathan's", 'cord', 'yard', '48', 'chimney', 'calico', 'suits', 'sideways', 'animals', 'black and blue', 'bikini', 'photographer', 'queen', '1:00', '12:05', 'horseback riding', 'awake', 'bunny', '12:00', 'continental', 'rye', 'family', 'lots', 'owner', 'palm tree', 'design', 'far right', 'tire', 'younger', 'biking', 'giants', 'caramel', 'polo', 'emirates', 'magnets', 'mat', 'ivy', 'cakes', 'bob', 'asia', 'graduation', 'cauliflower', 'c', 'rough', 'air', 'windy', 'victoria', 'trick', 'labrador', 'on left', 'yellow and green', 'butterfly', 'fake', 'on napkin', 'bricks', 'wine glasses', 'detroit', "man's", 'parsley', 'art', 'subway', 'wave', 'placemat', 'hydrant', 'sofa', 'pigeon', 'all', 'branches', 'plant', 'to eat', 'zucchini', 'feta', 'mouse pad', 'cloud', 'toilet paper', 'pumpkin', 'rowing', 'handicap', 'seeds', 'fly kite', 'chicago', 'marble', 'frame', '150', 'rocky', 'sauce', "it's not", 'control', 'high chair', 'playstation', 'xbox', 'roman', 'land', '1:35', 'lifeguard', 'size', 'bull', 'goose', '8 feet', 'recessed', 'statue', 'index', 'phillies', 'strike', 'mirrors', 'pointing', 'farmer', 'collie', 'motorbike', 'lanes', 'bikes', 'gas station', 'logs', 'smaller', 'desert', 'yield', 'flags', 'stool', 'kitten', 'doll', 'daffodils', 'letters', 'dishwasher', 'nuts', '2013', 'persian', 'swim trunks', 'deep', 'doubles', 'in field', 'wristband', 'wheels', 'baking', '4:15', '11:00', 'ear', '2007', '51', 'frog', 'boogie board', 'hungry', 'by window', 'ambulance', 'pigtails', 'microsoft', 'on man', 'laying down', '3:00', 'taxi', 'pedestrian', 'landing', 'numbers', '38', 'stones', 'clocks', 'new', 'picnic', 'fog', 'buffalo', 'under armour', 'orioles', 'bags', 'golden gate', 'castle', 'canoe', 'selfie', 'cream', 'floating', 'indoor', 'antique', 'aluminum', 'peas', 'sun hat', 'on right', 'flour', 'under sink', 'fashion', 'fedora', 'shells', '1 hour', 'puppy', 'motor', '120', 'sail', 'mexican', 'dead end', 'paddle', 'shop', 'boxing', 'birthday cake', 'chalk', 'style', 'nissan', 'sticker', 'north face', 'squash', 'not sure', 'seat', 'himself', 'circles', 'san diego', 'kia', 'mattress', 'obama', 'lamb', 'american flag', 'climbing', 'skull and crossbones', 'roast beef', 'visor', 'double', '52', 'high', 'stagecoach', 'cart', 'feeding', 'eaten', 'cone', 'smoothie', 'golf', 'colorado', 'electronics', '5:15', 'bowling', 'players', 'ketchup and mustard', 'styrofoam', '6 feet', 'hawk', 'cheddar', 'arabic', 'shower curtain', 'army', 'salmon', 'hanging', 'whole', 'behind fence', 'bars', 'moss', 'no dog', 'traffic', 'r', 'countryside', 'directions', 'cooked', 'aa', '6:45', '4 way', 'stripe', 'brand', 'baseball player', 'bunk', 'coleslaw', 'europe', 'dead', 'arch', 'scrambled', 'clothing', 'closet', 'egg', 'suitcases', 'indoors', 'tires', 'lilies', 'cafe', 'toothpaste', 'in background', 'tarmac', 'painted', 'sunset', 'orange and yellow', 'zebra and giraffe', 'ladybug', 'hills', 'tail', 'couple', 'kawasaki', 'smooth', 'powdered sugar', 'pedestrian crossing', 'french fries', 'teeth', 'ribbon', 'saddle', 'on train', '39', 'curb', 'tow', 'shark', 'white and orange', 'gravy', 'curtain', 'lime', 'skull', 'crossing', 'peacock', 'neck', 'hit', 'dragon', 'tissues', 'basil', 'waving', 'helicopter', 'mud', 'us', 'red and gray', 'sunflower', 'wallpaper', '11:20', 'seattle', 'bookshelf', 'looking', '1 inch', 'harley', 'urinal', 'navy', 'fedex', 'rays', 'deck', 'coaster', '1:20', '4:20', '5:00', 'jp morgan', 'palm trees', 'tub', 'pens', '2 people', 'speaker', 'hamburger', 'green beans', "it isn't", '10:20', 'buildings', 'on shelf', 'orange and blue', '90', 'north america', 'arrow', 'news', 'tropicana', 'formal', 'in grass', 'thumbs up', 'clip', 'tennis player', 'pastry', 'nose', 'pacifier', '11:35', 'different teams', 'cardinals', 'bagel', 'huge', 'out of focus', 'cook', 'wheat', 'photo', 'sedan', 'lanyard', 'pink and white', 'sesame', 'space', 'warning', 'snowy', 'tater tots', 'tropical', 'grandfather', 'mac', 'pajamas', '350', 'casserole', 'pelican', '2009', 'clydesdale', 'tow truck', 'belt', 'west', 'omelet', 'heavy', 'crown', 'in corner', 'hexagon', 'mound', 'iris', 'g', '2:15', '3:10', 'drawing', 'only', 'washing', 'nokia', 'windsor', 'icing', 'several', 'no smoking', 'kayak', 'frosting', 'jetblue', 'shoe', 'britain', 'ties', 'bank', 'camouflage', 'privacy', 'bib', 'blue and gray', 'looking out window', 'falling', 'bucket', 'cupcakes', 'throw ball', 'garden', 'almonds', 'starbucks', 'all way', 'home plate', 'base', 'toys', '1 in front', 'foot', 'california', 'towing', 'cheesecake', 'bushes', 'bow tie', 'down street', '2011', 'police officer', 'windmill', 'taking pictures', 'cleaning', 'on pole', 'main street', 'catch ball', 'mario', 'track', 'garage', "they aren't", 'tents', 'tattoos', '2:45', 'wheelchair', 'money', 'top hat', 'willow', 'brushing hair', '80', 'green and red', 'barrier', 'hiking', 'tank top', 'lufthansa', 'menu', 'forehand', 'wii controllers', 'hundreds', 'water ski', 'furniture', 'paisley', 'pizza hut', 'hill', 'prom', 'tiara', 'students', 'information', 'hazy', 'canon', 'bird feeder', 'crane', 'dr pepper', 'logitech', '2:10', 'all of them', 'utensils', 'telephone', 'converse', 'bone', 'jeep', 'nursing', 'krispy kreme', 'ranch', 'polka dots', 'railroad crossing', 'shirts', 'feeder', 'above toilet', 'unclear', 'below', '43', 'spoons', 'calendar', 'mint', 'spiderman', 'lg', 'concert', 'coats', 'lady', 'dodge', 'flat screen', '10:30', 'music', 'polar bears', 'riding horse', 'cookies', 'hot', 'behind', 'dole', '26', 'pans', 'love', 'winnie pooh', 'copyright', '2 hours', 'snowsuit', 'kissing', 'backhand', 'swans', 'nintendo', 'direction', 'waiting', 'mohawk', 'rail', 'hoodie', 'feet', '106', '10:55', 'coins', 'mitt', 'room', 'adults', 'cameras', 'marker', 'sled', 'conductor', 'farmers market', 'toiletries', 'blue and black', 'sprite', 'bank of america', 'heat', 'emergency', 'hard', '41', '6:00', 'in his hand', 'cluttered', 'grizzly', 'not', 'in hand', 'under table', 'd', 'hitting ball', 'photography', 'intersection', 'backwards', 'crocs', 'chips', 'harry potter', 'hawaii', 'half full', 'carriage', 'curious', 'geese', 'pork', 'l', 'sidecar', 'penguin', 'to see', 'pocket', 'steps', 'cubs', 'junk', 'deer', 'ottoman', 'salt', 'condiments', '1:55', 'post', 'bulldog', 'notebook', 'no cat', 'jets', 'knee pads', 'throw frisbee', 'drinks', 'leopard', 'grape', 'wine tasting', 'baskets', 'santa hat', 'chest', 'sewing', 'on car', 'sony ericsson', 'peeing', 'tour', 'fire extinguisher', 'lemons', 'wiimote', 'guitar hero', 'stopped', 'library', 'blue and pink', 'choppy', 'sailing', 'brush', 'jelly', 'dairy queen', 'shaking hands', 'ge', 'tigers', 'tokyo', 'buses', 'pink and blue', 'singles', 'iron', "don't walk", 'classroom', 'harbor', 'residential', 'joshua', 'uk', 'burgers', 'lace', 'overalls', 'ram', 'dancing', '47', 'shed', 'lid', "he's not", 'amtrak', 'ostrich', 'bathtub', '2:50', 'mall', 'slow down', 'hammer time', 'octopus', 'crib', 'broadway', 'pottery', 'wavy', 'holding phone', 'tusks', 'dining', 'packing', 'thomas', 'budweiser', 'beijing', '11:10', 'wide', 'slope', 'black and gray', 'chili', 'siblings', 'kayaking', 'captivity', 'rack', 'panda', 'pelicans', 'genetics', 'not in service', 'v', 'on laptop', 'gone', 'tying tie', 'scale', 'lily', 'cool', 'n', 'toilets', 'tree branch', 'copper', '870', 'shopping', 'batman', 'black and brown', 'legos', 'drinking water', 'burrito', 'spiral', 'ibm', 'tools', 'cherries', 'maple leaf', 'vines', 'sushi', 'baker', 'globe', 'wireless', 'compaq', 'do not enter', '1:05', 'advertisement', 'movement', 'model', 'hammock', 'swing', 'sheet', 'google', 'right 1', 'haircut', 'exit', 'tim hortons', 'lego', 'cucumbers', 'potato', 'egg salad', 'controllers', 'upside down', 'lion', 'camo', 'dirt bike', 'playing video games', 'crates', 'horizontally', 'plunger', 'radiator', 'in basket', 'cap', 'living', 'briefcase', 'ascending', 'flip phone', '101', 'gun', 'foam', 'serious', 'pancakes', 'heineken', 'driveway', 'cleaner', 'delivery', 'commuter', 'apple and banana', 'chase', 'trucks', 'trunks', '64', 'slacks', 'skiers', 'carrot cake', 'holding', 'surfers', 'horse racing', 'orchid', 'leaving', 'pitch', 'crest', 'miami', 'bus station', 'take off', 'diesel', 'pm', 'wetsuits', '7:35', 'tie dye', 'baked', 'life jacket', 'grilled cheese', 'meatballs', 'monster', 'smiley face', 'keys', 'straight ahead', 'badminton', 'end', '5:05', '10:50', 'each other', 'weeds', 'tinkerbell', 'rottweiler', 'apartments', 'sweatshirt', 'shore', 'switzerland', '65', 'jar', 'skate', 'raspberries', 'singing', 'on bus', 'carnations', 'descending', 'hsbc', 'space needle', 'skatepark', 'kenmore', 'db', "baby's breath", 'shelter', '1980', 'no left turn', '9:05', 'pipes', 'donkey', 'mitsubishi', 'tell time', 'outfield', 'flip', 'stadium', 'heinz', 'distance', 'macaroni', 'on plane', 'triumph', '4:50', 'on stove', 'shih tzu', 'fried', 'sunrise', '2nd', 'suzuki', 'traffic lights', 'hitting', 'healthy', 'tulip', 'right side', 'on sign', 'maroon', '5:40', 'michigan', 'close', 'license plate', 'sniffing', '1:15', 'cardinal', 'older', 'nest', 'colored', 'in back', 'formica', 'roundabout', 'drain', 'drying', '11:25', 'westjet', 'us air force', 'comcast', 'soon', 'futon', 'braid', 'us airways', '49', 'red velvet', 'sas', 'cosmo', '100 year party ct', 'in cabbage town']
@dataset_register(
name='VQA_split1',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQA_split1(root_dir, split, classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQA_split1_c',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQA_split1_c(root_dir, split, "gaussian_noise",classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1(root_dir, split, classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split2',
classes=all_classes[100: ],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split2(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
print(len(all_classes), len(ignore_classes))
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split2(root_dir, split, classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_gaussian_noise',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_gaussian_noise(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "gaussian_noise", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_shot_noise',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_shot_noise(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "shot_noise", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_impulse_noise',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_impulse_noise(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "impulse_noise", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_defocus_blur',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_defocus_blur(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "defocus_blur", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_glass_blur',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_glass_blur(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "glass_blur", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_motion_blur',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_motion_blur(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "motion_blur", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_zoom_blur',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_zoom_blur(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "zoom_blur", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_snow',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_snow(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "snow", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_frost',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_frost(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "frost", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_fog',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_fog(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "fog", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_brightness',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_brightness(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "brightness", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_contrast',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_contrast(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "contrast", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_elastic_transform',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_elastic_transform(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "elastic_transform", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_pixelate',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_pixelate(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "pixelate", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_jpeg_compression',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_jpeg_compression(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "jpeg_compression", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_speckle_noise',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_speckle_noise(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "speckle_noise", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_gaussian_blur',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_gaussian_blur(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "gaussian_blur", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_spatter',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_spatter(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "spatter", classes, ignore_classes, idx_map)
return dataset
@dataset_register(
name='VQAv2_split1_c_saturate',
classes=all_classes[0: 100],
task_type='Visual Question Answering',
object_type='Generic Object',
class_aliases=[],
shift_type=None
)
class VQAv2_split1_c_saturate(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = None
self.transform = transform
dataset = _VQAv2_split1_c(root_dir, split, "saturate", classes, ignore_classes, idx_map)
return dataset
|