File size: 6,522 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import json
import pandas as pd
import pyarrow as pa
import random
import os

from tqdm import tqdm
from glob import glob
from collections import defaultdict, Counter
from .glossary import normalize_word


def get_score(occurences):
    if occurences == 0:
        return 0.0
    elif occurences == 1:
        return 0.3
    elif occurences == 2:
        return 0.6
    elif occurences == 3:
        return 0.9
    else:
        return 1.0


def path2rest(path, split, annotations, label2ans):
    iid = int(path.split("/")[-1].split("_")[-1][:-4])

    with open(path, "rb") as fp:
        binary = fp.read()

    _annot = annotations[split][iid]
    _annot = list(_annot.items())
    qids, qas = [a[0] for a in _annot], [a[1] for a in _annot]
    questions = [qa[0] for qa in qas]
    answers = [qa[1] for qa in qas] if "test" not in split else list(list())
    answer_labels = (
        [a["labels"] for a in answers] if "test" not in split else list(list())
    )
    answer_scores = (
        [a["scores"] for a in answers] if "test" not in split else list(list())
    )
    answers = (
        [[label2ans[l] for l in al] for al in answer_labels]
        if "test" not in split
        else list(list())
    )

    return [binary, questions, answers, answer_labels, answer_scores, iid, qids, split]


def make_arrow(root, dataset_root):
    with open(f"{root}/v2_OpenEnded_mscoco_train2014_questions.json", "r") as fp:
        questions_train2014 = json.load(fp)["questions"]
    with open(f"{root}/v2_OpenEnded_mscoco_val2014_questions.json", "r") as fp:
        questions_val2014 = json.load(fp)["questions"]
    with open(f"{root}/v2_OpenEnded_mscoco_test2015_questions.json", "r") as fp:
        questions_test2015 = json.load(fp)["questions"]
    with open(f"{root}/v2_OpenEnded_mscoco_test-dev2015_questions.json", "r") as fp:
        questions_test_dev2015 = json.load(fp)["questions"]

    with open(f"{root}/v2_mscoco_train2014_annotations.json", "r") as fp:
        annotations_train2014 = json.load(fp)["annotations"]
    with open(f"{root}/v2_mscoco_val2014_annotations.json", "r") as fp:
        annotations_val2014 = json.load(fp)["annotations"]

    annotations = dict()

    for split, questions in zip(
        ["train", "val", "test", "test-dev"],
        [
            questions_train2014,
            questions_val2014,
            questions_test2015,
            questions_test_dev2015,
        ],
    ):
        _annot = defaultdict(dict)
        for q in tqdm(questions):
            _annot[q["image_id"]][q["question_id"]] = [q["question"]]

        annotations[split] = _annot

    all_major_answers = list()

    for split, annots in zip(
        ["train", "val"], [annotations_train2014, annotations_val2014],
    ):
        _annot = annotations[split]
        for q in tqdm(annots):
            all_major_answers.append(q["multiple_choice_answer"])

    all_major_answers = [normalize_word(word) for word in tqdm(all_major_answers)]
    counter = {k: v for k, v in Counter(all_major_answers).items() if v >= 9}
    ans2label = {k: i for i, k in enumerate(counter.keys())}
    label2ans = list(counter.keys())

    for split, annots in zip(
        ["train", "val"], [annotations_train2014, annotations_val2014],
    ):
        _annot = annotations[split]
        for q in tqdm(annots):
            answers = q["answers"]
            answer_count = {}
            for answer in answers:
                answer_ = answer["answer"]
                answer_count[answer_] = answer_count.get(answer_, 0) + 1

            labels = []
            scores = []
            for answer in answer_count:
                if answer not in ans2label:
                    continue
                labels.append(ans2label[answer])
                score = get_score(answer_count[answer])
                scores.append(score)

            _annot[q["image_id"]][q["question_id"]].append(
                {"labels": labels, "scores": scores,}
            )

    for split in ["train", "val"]:
        filtered_annot = dict()
        for ik, iv in annotations[split].items():
            new_q = dict()
            for qk, qv in iv.items():
                if len(qv[1]["labels"]) != 0:
                    new_q[qk] = qv
            if len(new_q) != 0:
                filtered_annot[ik] = new_q
        annotations[split] = filtered_annot

    for split in [
        "train",
        "val",
        "test",
        "test-dev",
    ]:
        annot = annotations[split]
        split_name = {
            "train": "train2014",
            "val": "val2014",
            "test": "test2015",
            "test-dev": "test2015",
        }[split]
        paths = list(glob(f"{root}/{split_name}/*.jpg"))
        random.shuffle(paths)
        annot_paths = [
            path
            for path in paths
            if int(path.split("/")[-1].split("_")[-1][:-4]) in annot
        ]

        if len(paths) == len(annot_paths):
            print("all images have caption annotations")
        else:
            print("not all images have caption annotations")
        print(
            len(paths), len(annot_paths), len(annot),
        )

        bs = [
            path2rest(path, split, annotations, label2ans) for path in tqdm(annot_paths)
        ]

        dataframe = pd.DataFrame(
            bs,
            columns=[
                "image",
                "questions",
                "answers",
                "answer_labels",
                "answer_scores",
                "image_id",
                "question_id",
                "split",
            ],
        )

        table = pa.Table.from_pandas(dataframe)

        os.makedirs(dataset_root, exist_ok=True)
        with pa.OSFile(f"{dataset_root}/vqav2_{split}.arrow", "wb") as sink:
            with pa.RecordBatchFileWriter(sink, table.schema) as writer:
                writer.write_table(table)

    table = pa.ipc.RecordBatchFileReader(
        pa.memory_map(f"{dataset_root}/vqav2_val.arrow", "r")
    ).read_all()

    pdtable = table.to_pandas()

    df1 = pdtable[:-1000]
    df2 = pdtable[-1000:]

    df1 = pa.Table.from_pandas(df1)
    df2 = pa.Table.from_pandas(df2)

    with pa.OSFile(f"{dataset_root}/vqav2_trainable_val.arrow", "wb") as sink:
        with pa.RecordBatchFileWriter(sink, df1.schema) as writer:
            writer.write_table(df1)

    with pa.OSFile(f"{dataset_root}/vqav2_rest_val.arrow", "wb") as sink:
        with pa.RecordBatchFileWriter(sink, df2.schema) as writer:
            writer.write_table(df2)