File size: 6,522 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import json
import pandas as pd
import pyarrow as pa
import random
import os
from tqdm import tqdm
from glob import glob
from collections import defaultdict, Counter
from .glossary import normalize_word
def get_score(occurences):
if occurences == 0:
return 0.0
elif occurences == 1:
return 0.3
elif occurences == 2:
return 0.6
elif occurences == 3:
return 0.9
else:
return 1.0
def path2rest(path, split, annotations, label2ans):
iid = int(path.split("/")[-1].split("_")[-1][:-4])
with open(path, "rb") as fp:
binary = fp.read()
_annot = annotations[split][iid]
_annot = list(_annot.items())
qids, qas = [a[0] for a in _annot], [a[1] for a in _annot]
questions = [qa[0] for qa in qas]
answers = [qa[1] for qa in qas] if "test" not in split else list(list())
answer_labels = (
[a["labels"] for a in answers] if "test" not in split else list(list())
)
answer_scores = (
[a["scores"] for a in answers] if "test" not in split else list(list())
)
answers = (
[[label2ans[l] for l in al] for al in answer_labels]
if "test" not in split
else list(list())
)
return [binary, questions, answers, answer_labels, answer_scores, iid, qids, split]
def make_arrow(root, dataset_root):
with open(f"{root}/v2_OpenEnded_mscoco_train2014_questions.json", "r") as fp:
questions_train2014 = json.load(fp)["questions"]
with open(f"{root}/v2_OpenEnded_mscoco_val2014_questions.json", "r") as fp:
questions_val2014 = json.load(fp)["questions"]
with open(f"{root}/v2_OpenEnded_mscoco_test2015_questions.json", "r") as fp:
questions_test2015 = json.load(fp)["questions"]
with open(f"{root}/v2_OpenEnded_mscoco_test-dev2015_questions.json", "r") as fp:
questions_test_dev2015 = json.load(fp)["questions"]
with open(f"{root}/v2_mscoco_train2014_annotations.json", "r") as fp:
annotations_train2014 = json.load(fp)["annotations"]
with open(f"{root}/v2_mscoco_val2014_annotations.json", "r") as fp:
annotations_val2014 = json.load(fp)["annotations"]
annotations = dict()
for split, questions in zip(
["train", "val", "test", "test-dev"],
[
questions_train2014,
questions_val2014,
questions_test2015,
questions_test_dev2015,
],
):
_annot = defaultdict(dict)
for q in tqdm(questions):
_annot[q["image_id"]][q["question_id"]] = [q["question"]]
annotations[split] = _annot
all_major_answers = list()
for split, annots in zip(
["train", "val"], [annotations_train2014, annotations_val2014],
):
_annot = annotations[split]
for q in tqdm(annots):
all_major_answers.append(q["multiple_choice_answer"])
all_major_answers = [normalize_word(word) for word in tqdm(all_major_answers)]
counter = {k: v for k, v in Counter(all_major_answers).items() if v >= 9}
ans2label = {k: i for i, k in enumerate(counter.keys())}
label2ans = list(counter.keys())
for split, annots in zip(
["train", "val"], [annotations_train2014, annotations_val2014],
):
_annot = annotations[split]
for q in tqdm(annots):
answers = q["answers"]
answer_count = {}
for answer in answers:
answer_ = answer["answer"]
answer_count[answer_] = answer_count.get(answer_, 0) + 1
labels = []
scores = []
for answer in answer_count:
if answer not in ans2label:
continue
labels.append(ans2label[answer])
score = get_score(answer_count[answer])
scores.append(score)
_annot[q["image_id"]][q["question_id"]].append(
{"labels": labels, "scores": scores,}
)
for split in ["train", "val"]:
filtered_annot = dict()
for ik, iv in annotations[split].items():
new_q = dict()
for qk, qv in iv.items():
if len(qv[1]["labels"]) != 0:
new_q[qk] = qv
if len(new_q) != 0:
filtered_annot[ik] = new_q
annotations[split] = filtered_annot
for split in [
"train",
"val",
"test",
"test-dev",
]:
annot = annotations[split]
split_name = {
"train": "train2014",
"val": "val2014",
"test": "test2015",
"test-dev": "test2015",
}[split]
paths = list(glob(f"{root}/{split_name}/*.jpg"))
random.shuffle(paths)
annot_paths = [
path
for path in paths
if int(path.split("/")[-1].split("_")[-1][:-4]) in annot
]
if len(paths) == len(annot_paths):
print("all images have caption annotations")
else:
print("not all images have caption annotations")
print(
len(paths), len(annot_paths), len(annot),
)
bs = [
path2rest(path, split, annotations, label2ans) for path in tqdm(annot_paths)
]
dataframe = pd.DataFrame(
bs,
columns=[
"image",
"questions",
"answers",
"answer_labels",
"answer_scores",
"image_id",
"question_id",
"split",
],
)
table = pa.Table.from_pandas(dataframe)
os.makedirs(dataset_root, exist_ok=True)
with pa.OSFile(f"{dataset_root}/vqav2_{split}.arrow", "wb") as sink:
with pa.RecordBatchFileWriter(sink, table.schema) as writer:
writer.write_table(table)
table = pa.ipc.RecordBatchFileReader(
pa.memory_map(f"{dataset_root}/vqav2_val.arrow", "r")
).read_all()
pdtable = table.to_pandas()
df1 = pdtable[:-1000]
df2 = pdtable[-1000:]
df1 = pa.Table.from_pandas(df1)
df2 = pa.Table.from_pandas(df2)
with pa.OSFile(f"{dataset_root}/vqav2_trainable_val.arrow", "wb") as sink:
with pa.RecordBatchFileWriter(sink, df1.schema) as writer:
writer.write_table(df1)
with pa.OSFile(f"{dataset_root}/vqav2_rest_val.arrow", "wb") as sink:
with pa.RecordBatchFileWriter(sink, df2.schema) as writer:
writer.write_table(df2) |