File size: 6,354 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii Inc. All rights reserved.

import inspect
import os
import sys
from loguru import logger

import torch


def get_caller_name(depth=0):
    """
    Args:
        depth (int): Depth of caller conext, use 0 for caller depth.
        Default value: 0.

    Returns:
        str: module name of the caller
    """
    # the following logic is a little bit faster than inspect.stack() logic
    frame = inspect.currentframe().f_back
    for _ in range(depth):
        frame = frame.f_back

    return frame.f_globals["__name__"]


class StreamToLoguru:
    """
    stream object that redirects writes to a logger instance.
    """

    def __init__(self, level="INFO", caller_names=("apex", "pycocotools")):
        """
        Args:
            level(str): log level string of loguru. Default value: "INFO".
            caller_names(tuple): caller names of redirected module.
                Default value: (apex, pycocotools).
        """
        self.level = level
        self.linebuf = ""
        self.caller_names = caller_names

    def write(self, buf):
        full_name = get_caller_name(depth=1)
        module_name = full_name.rsplit(".", maxsplit=-1)[0]
        if module_name in self.caller_names:
            for line in buf.rstrip().splitlines():
                # use caller level log
                logger.opt(depth=2).log(self.level, line.rstrip())
        else:
            sys.__stdout__.write(buf)

    def flush(self):
        pass


def redirect_sys_output(log_level="INFO"):
    redirect_logger = StreamToLoguru(log_level)
    sys.stderr = redirect_logger
    sys.stdout = redirect_logger


def setup_logger(save_dir, distributed_rank=0, filename="log.txt", mode="a"):
    """setup logger for training and testing.
    Args:
        save_dir(str): location to save log file
        distributed_rank(int): device rank when multi-gpu environment
        filename (string): log save name.
        mode(str): log file write mode, `append` or `override`. default is `a`.

    Return:
        logger instance.
    """
    loguru_format = (
        "<green>{time:YYYY-MM-DD HH:mm:ss}</green> | "
        "<level>{level: <8}</level> | "
        "<cyan>{name}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>"
    )

    logger.remove()
    save_file = os.path.join(save_dir, filename)
    if mode == "o" and os.path.exists(save_file):
        os.remove(save_file)
    # only keep logger in rank0 process
    if distributed_rank == 0:
        logger.add(
            sys.stderr,
            format=loguru_format,
            level="INFO",
            enqueue=True,
        )
        logger.add(save_file)

    # redirect stdout/stderr to loguru
    redirect_sys_output("INFO")


class WandbLogger(object):
    """
    Log training runs, datasets, models, and predictions to Weights & Biases.
    This logger sends information to W&B at wandb.ai.
    By default, this information includes hyperparameters,
    system configuration and metrics, model metrics,
    and basic data metrics and analyses.

    For more information, please refer to:
    https://docs.wandb.ai/guides/track
    """
    def __init__(self,
                 project=None,
                 name=None,
                 id=None,
                 entity=None,
                 save_dir=None,
                 config=None,
                 **kwargs):
        """
        Args:
            project (str): wandb project name.
            name (str): wandb run name.
            id (str): wandb run id.
            entity (str): wandb entity name.
            save_dir (str): save directory.
            config (dict): config dict.
            **kwargs: other kwargs.
        """
        try:
            import wandb
            self.wandb = wandb
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                "wandb is not installed."
                "Please install wandb using pip install wandb"
                )

        self.project = project
        self.name = name
        self.id = id
        self.save_dir = save_dir
        self.config = config
        self.kwargs = kwargs
        self.entity = entity
        self._run = None
        self._wandb_init = dict(
            project=self.project,
            name=self.name,
            id=self.id,
            entity=self.entity,
            dir=self.save_dir,
            resume="allow"
        )
        self._wandb_init.update(**kwargs)

        _ = self.run

        if self.config:
            self.run.config.update(self.config)
        self.run.define_metric("epoch")
        self.run.define_metric("val/", step_metric="epoch")

    @property
    def run(self):
        if self._run is None:
            if self.wandb.run is not None:
                logger.info(
                    "There is a wandb run already in progress "
                    "and newly created instances of `WandbLogger` will reuse"
                    " this run. If this is not desired, call `wandb.finish()`"
                    "before instantiating `WandbLogger`."
                )
                self._run = self.wandb.run
            else:
                self._run = self.wandb.init(**self._wandb_init)
        return self._run

    def log_metrics(self, metrics, step=None):
        """
        Args:
            metrics (dict): metrics dict.
            step (int): step number.
        """

        for k, v in metrics.items():
            if isinstance(v, torch.Tensor):
                metrics[k] = v.item()

        if step is not None:
            self.run.log(metrics, step=step)
        else:
            self.run.log(metrics)

    def save_checkpoint(self, save_dir, model_name, is_best):
        """
        Args:
            save_dir (str): save directory.
            model_name (str): model name.
            is_best (bool): whether the model is the best model.
        """
        filename = os.path.join(save_dir, model_name + "_ckpt.pth")
        artifact = self.wandb.Artifact(
            name=f"model-{self.run.id}",
            type="model"
        )
        artifact.add_file(filename, name="model_ckpt.pth")

        aliases = ["latest"]

        if is_best:
            aliases.append("best")

        self.run.log_artifact(artifact, aliases=aliases)

    def finish(self):
        self.run.finish()