File size: 15,378 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from typing import List
from data.dataloader import build_dataloader
# from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel

import torch
import sys
from torch import nn
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from methods.elasticdnn.model.bert import ElasticBertUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg
import tqdm
from methods.feat_align.mmd import mmd_rbf

class ElasticDNN_SeClsOnlineModel(ElasticDNN_OnlineModel):
    
    @torch.no_grad()
    def sd_feedback_to_md(self, after_da_sd, unpruned_indexes_of_layers):
        self.models_dict['sd'] = after_da_sd
        self.before_da_md = deepcopy(self.models_dict['md'])
        
        logger.info('\n\nsurrogate DNN feedback to master DNN...\n\n')
        # one-to-one
        
        cur_unpruned_indexes = None
        cur_unpruned_indexes_name = None
        
        for p_name, p in self.models_dict['sd'].named_parameters():
            matched_md_param = self.get_md_matched_param_of_sd_param(p_name)
            logger.debug(f'if feedback: {p_name}')
            if matched_md_param is None:
                continue
            logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_md_param.size()}')
            # average
            # setattr(matched_md_module, matched_md_param_name, (matched_md_param + p) / 2.)
            
            if p_name in unpruned_indexes_of_layers.keys():
                cur_unpruned_indexes = unpruned_indexes_of_layers[p_name]
                cur_unpruned_indexes_name = p_name
            
            if p.size() != matched_md_param.size():
                logger.debug(f'cur unpruned indexes: {cur_unpruned_indexes_name}, {cur_unpruned_indexes.size()}')
                
                if p.dim() == 1: # norm
                    new_p = deepcopy(matched_md_param)
                    new_p[cur_unpruned_indexes] = p
                elif p.dim() == 2: # linear
                    if p.size(0) < matched_md_param.size(0): # output pruned
                        new_p = deepcopy(matched_md_param)
                        new_p[cur_unpruned_indexes] = p
                    else: # input pruned
                        new_p = deepcopy(matched_md_param)
                        new_p[:, cur_unpruned_indexes] = p
                p = new_p
                
            assert p.size() == matched_md_param.size(), f'{p.size()}, {matched_md_param.size()}'
            
            if 'classifier' in p_name:
                continue
            # if False:
                # self.last_trained_cls_indexes 
                assert hasattr(self, 'last_trained_cls_indexes')
                print(self.last_trained_cls_indexes)

                diff = self._compute_diff(matched_md_param, p)
                # matched_md_param[self.last_trained_cls_indexes].copy_(p[self.last_trained_cls_indexes.to(self.device)])
                matched_md_param.copy_(p)
                logger.debug(f'SPECIFIC FOR CL HEAD | end feedback: {p_name}, diff: {diff:.6f}')
            else:
                diff = self._compute_diff(matched_md_param, (matched_md_param + p) / 2.)
                matched_md_param.copy_((matched_md_param + p) / 2.)
                logger.debug(f'end feedback: {p_name}, diff: {diff:.6f}')
            
    def add_cls_in_head(self, num_cls):
        head: nn.Linear = get_module(self.models_dict['md'], 'classifier')
        
        new_head = nn.Linear(head.in_features, head.out_features + num_cls, head.bias is not None, device=self.device)
        
        # nn.init.zeros_(new_head.weight.data)
        # nn.init.zeros_(new_head.bias.data)
        
        new_head.weight.data[0: head.out_features] = deepcopy(head.weight.data)
        new_head.bias.data[0: head.out_features] = deepcopy(head.bias.data)
        set_module(self.models_dict['md'], 'classifier', new_head)
        set_module(self.models_dict['fm'], 'classifier', new_head)
        
    
    def get_accuracy(self, test_loader, *args, **kwargs):
        acc = 0
        sample_num = 0
        
        self.to_eval_mode()
        
        with torch.no_grad():
            pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
            for batch_index, (x, y) in pbar:
                for k, v in x.items():
                    if isinstance(v, torch.Tensor):
                        x[k] = v.to(self.device)
                y = y.to(self.device)
                output = self.infer(x)
                pred = F.softmax(output, dim=1).argmax(dim=1)
                correct = torch.eq(pred, y).sum().item()
                acc += correct
                sample_num += len(y)
                
                pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, '
                                     f'cur_batch_acc: {(correct / len(y)):.4f}')

        acc /= sample_num
        return acc
    
    def get_elastic_dnn_util(self) -> ElasticDNNUtil:
        return ElasticBertUtil()
    
    def get_fm_matched_param_of_md_param(self, md_param_name):
        # only between qkv.weight, norm.weight/bias
        self_param_name = md_param_name
        fm = self.models_dict['fm']
        if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]):
            return None
        
        p = get_parameter(self.models_dict['md'], self_param_name)
        if p.dim() == 0:
            return None
        elif p.dim() == 1 and 'LayerNorm' in self_param_name and 'weight' in self_param_name:
            return get_parameter(fm, self_param_name)
        
        # 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
        if ('query' in self_param_name or 'key' in self_param_name or \
            'value' in self_param_name) and ('weight' in self_param_name):
            
            ss = self_param_name.split('.')
            
            fm_qkv_name = '.'.join(ss[0: -1]) + '.fc'
            fm_qkv = get_module(fm, fm_qkv_name)
            
            fm_abs_name = '.'.join(ss[0: -1]) + '.ab'
            fm_abs = get_module(fm, fm_abs_name)
            
            # NOTE: unrecoverable operation! multiply LoRA parameters to allow it being updated in update_fm_param()
            # TODO: if fm will be used for inference, _mul_lora_weight will not be applied!
            if not hasattr(fm_abs, '_mul_lora_weight'):
                logger.debug(f'set _mul_lora_weight in {fm_abs_name}')
                setattr(fm_abs, '_mul_lora_weight', 
                        nn.Parameter(fm_abs[1].weight @ fm_abs[0].weight))
            
            return torch.cat([
                fm_qkv.weight.data, # task-agnositc params
                fm_abs._mul_lora_weight.data # task-specific params (LoRA)
            ], dim=0)
            
        # elif 'to_qkv.bias' in self_param_name:
        #     ss = self_param_name.split('.')
            
        #     fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
        #     return get_parameter(fm, fm_qkv_name)
            
        elif 'dense' in self_param_name and 'weight' in self_param_name:
            fm_param_name = self_param_name.replace('.linear', '')
            return get_parameter(fm, fm_param_name)

        # elif 'mlp.fc2' in self_param_name and 'weight' in self_param_name:
        #     fm_param_name = self_param_name
        #     return get_parameter(fm, fm_param_name)
        
        else:
            # return get_parameter(fm, self_param_name)
            return None
        
    def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param):
        if not ('query' in md_param_name or 'key' in md_param_name or 'value' in md_param_name):
            matched_fm_param_ref = self.get_fm_matched_param_of_md_param(md_param_name)
            matched_fm_param_ref.copy_(cal_new_fm_param_by_md_param)
        else:
            new_fm_attn_weight, new_fm_lora_weight = torch.chunk(cal_new_fm_param_by_md_param, 2, 0)
            
            ss = md_param_name.split('.')
            fm = self.models_dict['fm']
            
            # update task-agnostic parameters
            fm_qkv_name = '.'.join(ss[0: -1]) + '.fc'
            fm_qkv = get_module(fm, fm_qkv_name)
            fm_qkv.weight.data.copy_(new_fm_attn_weight)
            
            # update task-specific parameters
            fm_abs_name = '.'.join(ss[0: -1]) + '.ab'
            fm_abs = get_module(fm, fm_abs_name)
            fm_abs._mul_lora_weight.data.copy_(new_fm_lora_weight) # TODO: this will not be applied in inference!
        
    def get_md_matched_param_of_fm_param(self, fm_param_name):
        return super().get_md_matched_param_of_fm_param(fm_param_name)
    
    def get_md_matched_param_of_sd_param(self, sd_param_name):
        # raise NotImplementedError

        # only between qkv.weight, norm.weight/bias
        self_param_name = sd_param_name
        md = self.models_dict['md']
        if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]):
            return None
        
        p = get_parameter(self.models_dict['sd'], self_param_name)
        if p.dim() == 0:
            return None
        elif p.dim() == 1 and 'LayerNorm' in self_param_name and 'weight' in self_param_name:
            return get_parameter(md, self_param_name)
        
        if 'classifier' in self_param_name:
            return get_parameter(md, self_param_name)
        
        # 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
        if ('query' in self_param_name or 'key' in self_param_name or \
            'value' in self_param_name) and ('weight' in self_param_name):
            
        
            return get_parameter(md, self_param_name) # NOTE: no fbs in qkv!
            
        # elif 'to_qkv.bias' in self_param_name:
        #     ss = self_param_name.split('.')
            
        #     fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
        #     return get_parameter(fm, fm_qkv_name)
            
        elif 'intermediate.dense.0.weight' in self_param_name:
            fm_param_name = '.'.join(self_param_name.split('.')[0: -2]) + '.linear.weight'
            return get_parameter(md, fm_param_name)

        elif 'output.dense' in self_param_name and 'weight' in self_param_name:
            fm_param_name = self_param_name
            return get_parameter(md, fm_param_name)
        
        else:
            # return get_parameter(fm, self_param_name)
            return None
    
    def get_task_head_params(self):
        head = get_module(self.models_dict['sd'], 'classifier')
        return list(head.parameters())
    

from methods.gem.gem_el_bert import OnlineGEMModel
import tqdm
from methods.feat_align.mmd import mmd_rbf
from copy import deepcopy


class SeClsOnlineGEMModel(OnlineGEMModel):
    def get_trained_params(self):
        qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'query' in n or 'key' in n or 'value' in n or 'dense' in n or 'LayerNorm' in n]
        return qkv_and_norm_params
    
    def forward_to_get_task_loss(self, x, y):
        return F.cross_entropy(self.infer(x), y)
    
    def add_cls_in_head(self, num_cls):
        return

        head: nn.Linear = get_module(self.models_dict['main'], 'head')
        
        new_head = nn.Linear(head.in_features, head.out_features + num_cls, head.bias is not None, device=self.device)
        new_head.weight.data[0: head.out_features] = deepcopy(head.weight.data)
        new_head.bias.data[0: head.out_features] = deepcopy(head.bias.data)
        set_module(self.models_dict['main'], 'head', new_head)
        
    def infer(self, x, *args, **kwargs):
        return self.models_dict['main'](**x)
    
    def get_accuracy(self, test_loader, *args, **kwargs):
        _d = test_loader.dataset
        from data import build_dataloader, split_dataset
        if _d.__class__.__name__ == '_SplitDataset' and _d.underlying_dataset.__class__.__name__ == 'MergedDataset': # necessary for CL
            print('\neval on merged datasets')
            
            merged_full_dataset = _d.underlying_dataset.datasets
            ratio = len(_d.keys) / len(_d.underlying_dataset)
            
            if int(len(_d) * ratio) == 0:
                ratio = 1.
            # print(ratio)
            # bs = 
            # test_loaders = [build_dataloader(split_dataset(d, min(max(test_loader.batch_size, int(len(d) * ratio)), len(d)))[0], # TODO: this might be overlapped with train dataset
            #                                  min(test_loader.batch_size, int(len(d) * ratio)), 
            #                                  test_loader.num_workers, False, None) for d in merged_full_dataset]

            test_loaders = []
            for d in merged_full_dataset:
                n = int(len(d) * ratio)
                if n == 0:
                    n = len(d)
                sub_dataset = split_dataset(d, min(max(test_loader.batch_size, n), len(d)))[0]
                loader = build_dataloader(sub_dataset, min(test_loader.batch_size, n), test_loader.num_workers, False, None)
                test_loaders += [loader]
            
            accs = [self.get_accuracy(loader) for loader in test_loaders]
            print(accs)
            return sum(accs) / len(accs)
        
        acc = 0
        sample_num = 0
        
        self.to_eval_mode()
        
        with torch.no_grad():
            pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
            for batch_index, (x, y) in pbar:
                for k, v in x.items():
                    if isinstance(v, torch.Tensor):
                        x[k] = v.to(self.device)
                y = y.to(self.device)
                output = self.infer(x)
                pred = F.softmax(output, dim=1).argmax(dim=1)
                correct = torch.eq(pred, y).sum().item()
                acc += correct
                sample_num += len(y)
                
                # if batch_index == 0:
                #     print(pred, y)
                
                pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, '
                                     f'cur_batch_acc: {(correct / len(y)):.4f}')

        acc /= sample_num
        return acc