File size: 4,999 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from typing import List
from data.dataloader import build_dataloader
# from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel

import torch
import sys
from torch import nn
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from methods.elasticdnn.model.vit import ElasticViTUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from methods.gem.gem_el_vilt import GEMAlg
import tqdm
from methods.feat_align.mmd import mmd_rbf
from experiments.utils.elasticfm_cl import init_online_model, elasticfm_cl
from data import build_cl_scenario, build_scenario

device = 'cuda'
app_name = 'vqa'
sd_sparsity = 0.8

settings = {
    'involve_fm': True
}

target_datasets = ['VQAv2_split1_c_gaussian_noise', 'VQAv2_split1_c_shot_noise', 'VQAv2_split1_c_impulse_noise', 'VQAv2_split1_c_defocus_blur', 'VQAv2_split1_c_glass_blur', 'VQAv2_split1_c_motion_blur', 'VQAv2_split1_c_zoom_blur', 'VQAv2_split1_c_snow', 'VQAv2_split1_c_frost', 'VQAv2_split1_c_fog', 'VQAv2_split1_c_brightness', 'VQAv2_split1_c_contrast', 'VQAv2_split1_c_elastic_transform', 'VQAv2_split1_c_pixelate', 'VQAv2_split1_c_jpeg_compression', 'VQAv2_split1_c_speckle_noise', 'VQAv2_split1_c_gaussian_blur', 'VQAv2_split1_c_spatter', 'VQAv2_split1_c_saturate'] * 2
target_datasets = target_datasets[0: 30]
assert len(target_datasets) == 30

scenario = build_scenario(
    source_datasets_name=['VQAv2_split1'],
    target_datasets_order=target_datasets,
    da_mode='close_set',
    data_dirs={
        k: '/data/zql/datasets/vqav2vv' for k in ['VQAv2_split1', 'VQAv2_split1_c_gaussian_noise', 'VQAv2_split1_c_shot_noise', 'VQAv2_split1_c_impulse_noise', 'VQAv2_split1_c_defocus_blur', 'VQAv2_split1_c_glass_blur', 'VQAv2_split1_c_motion_blur', 'VQAv2_split1_c_zoom_blur', 'VQAv2_split1_c_snow', 'VQAv2_split1_c_frost', 'VQAv2_split1_c_fog', 'VQAv2_split1_c_brightness', 'VQAv2_split1_c_contrast', 'VQAv2_split1_c_elastic_transform', 'VQAv2_split1_c_pixelate', 'VQAv2_split1_c_jpeg_compression', 'VQAv2_split1_c_speckle_noise', 'VQAv2_split1_c_gaussian_blur', 'VQAv2_split1_c_spatter', 'VQAv2_split1_c_saturate']
    },
)
scenario = build_cl_scenario(
    da_scenario=scenario,
    target_datasets_name=['VQAv2_split2'],
    num_classes_per_task=20,
    max_num_tasks=30,
    data_dirs={
        'VQAv2_split2': '/data/zql/datasets/vqav2vv' # NOTE: trick, see vqav2.py (the implementation of VQAv2 dataset)
    },
    sanity_check=True
)

from experiments.elasticdnn.vilt.online.vqa_cl.model import ElasticDNN_VQAOnlineModel
elasticfm_model = ElasticDNN_VQAOnlineModel('cls', init_online_model(
    # 'experiments/elasticdnn/vit_b_16/offline/fm_to_md/results/cls_md_index.py/20230529/star_999997-154037-only_prune_mlp/models/fm_best.pt',
    # 'experiments/elasticdnn/vit_b_16/offline/fm_to_md/results/cls_md_index.py/20230529/star_999997-154037-only_prune_mlp/models/md_best.pt',
    'experiments/elasticdnn/vilt/offline/fm_to_md/vqa/results/vqa_w_fbs_index.py/20230731/999999-095720-trial/models/fm_best.pt',
    'experiments/elasticdnn/vilt/offline/fm_to_md/vqa/results/vqa_w_fbs_index.py/20230731/999999-095720-trial/models/md_best.pt',
    'cls', __file__
), device, {
    'md_to_fm_alpha': 0.1,
    'fm_to_md_alpha': 0.001
})

da_alg = GEMAlg
from experiments.elasticdnn.vilt.online.vqa_cl.model import VQAOnlineGEMModel
da_model = VQAOnlineGEMModel
da_alg_hyp = {
    'train_batch_size': 64,
    'val_batch_size': 256,
    'num_workers': 0,
    'optimizer': 'AdamW',
    'optimizer_args': {'lr': 3e-3, 'betas': [0.9, 0.999], 'weight_decay': 0.0},
    'scheduler': '',
    'scheduler_args': {},
    'num_iters': 100 * 8,
    'val_freq': 20 * 8,
    # 'num_iters': 1,
    # 'val_freq': 1,
    'n_memories': 64,
    'n_inputs': 3 * 224 * 224,
    'margin': 0.5,
    'num_my_iters': 1,
    'sd_sparsity': sd_sparsity,
}


elasticfm_cl(
    [app_name],
    [scenario],
    [elasticfm_model],
    [da_alg],
    [da_alg_hyp],
    [da_model],
    device,
    settings,
    __file__,
    sys.argv[1]
)