File size: 8,477 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import sys
from utils.dl.common.env import set_random_seed
set_random_seed(1)

from typing import List
from data.dataloader import build_dataloader
from data import Scenario
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel

import torch
import sys
from torch import nn
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from methods.elasticdnn.model.vit import ElasticViTUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
import shutil
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg
import tqdm
from methods.feat_align.mmd import mmd_rbf
from methods.base.alg import BaseAlg
from methods.base.model import BaseModel
from copy import deepcopy
import time


def baseline_da(app_name: str,
                 scenario: Scenario, 
                 da_alg: BaseAlg, 
                 da_alg_hyp: dict,
                 da_model: BaseModel,
                 device,
                 __entry_file__,
                 tag=None):
    
    # involve_fm = settings['involve_fm']
    
    task_name = app_name
    # online_model = elasticfm_model
    
    log_dir = get_res_save_dir(__entry_file__, tag=tag)
    tb_writer = create_tbwriter(os.path.join(log_dir, 'tb_log'), False)
    res = []
    global_avg_after_acc = 0.
    global_iter = 0
    
    for domain_index, _ in enumerate(scenario.target_domains_order):
        
        cur_target_domain_name = scenario.target_domains_order[scenario.cur_domain_index]
        if cur_target_domain_name in da_alg_hyp:
            da_alg_hyp = da_alg_hyp[cur_target_domain_name]
            logger.info(f'use dataset-specific da_alg_hyp')
        
        da_metrics, after_da_model = da_alg(
            {'main': da_model}, 
            os.path.join(log_dir, f'{task_name}/{domain_index}')
        ).run(scenario, da_alg_hyp)
        # os.remove(tmp_sd_path)
        
        # 前面在当前域上训练,在这里压缩调优?
        # print(da_model.models_dict['main'])
        # 进行压缩
        reducing_width_ratio = 8
        samples = torch.rand(1, 3, 224, 224).to(device)

        trained_fm_model = deepcopy(da_model.models_dict['main'])
        fm_da_model = deepcopy(da_model) # 保存大模型
        lora_util = FMLoRA_ViT_Util()
        lora_absorbed_fm_model = lora_util.absorb_lora_and_recover_net_structure(trained_fm_model, samples)
        compressed_fm_model = FM_to_MD_ViT_Util().init_md_from_fm_by_reducing_width_with_perf_test(lora_absorbed_fm_model, reducing_width_ratio, samples)
        da_model.models_dict['main'] = compressed_fm_model
        
        # 进行调优?之前那个da_metrics是FM的结果吧,调优也能得到一个精度结果换成这个?
        
        datasets_for_training = scenario.get_online_cur_domain_datasets_for_training()
        train_dataset = datasets_for_training[cur_target_domain_name]['train']
        val_dataset = datasets_for_training[cur_target_domain_name]['val']
        datasets_for_inference = scenario.get_online_cur_domain_datasets_for_inference()
        test_dataset = datasets_for_inference
        
        train_loader = iter(build_dataloader(train_dataset, da_alg_hyp['train_batch_size'], da_alg_hyp['num_workers'], True, None))
        test_loader = build_dataloader(test_dataset, da_alg_hyp['val_batch_size'], da_alg_hyp['num_workers'], False, False)
        
        for p in compressed_fm_model.parameters():
            p.requires_grad = True
        da_model.to_train_mode()
        
        # 'distill_optimizer': 'AdamW',
        # 'distill_optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01},
        optimizer = torch.optim.__dict__['AdamW']([
            {'params': da_model.models_dict['main'].parameters(), **{'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01}}
        ])
        if da_alg_hyp['scheduler'] != '':
            scheduler = torch.optim.lr_scheduler.__dict__[da_alg_hyp['scheduler']](optimizer, **da_alg_hyp['scheduler_args'])
        else:
            scheduler = None
        
        pbar = tqdm.tqdm(range(da_alg_hyp['num_iters']), dynamic_ncols=True)

        accs = []
        total_train_time = 0.
        cur_acc = 0.
        for iter_index in pbar:
            cur_start_time = time.time()
            da_model.to_train_mode()
            fm_da_model.to_eval_mode()
                
            x, y = next(train_loader)
            if isinstance(x, dict):
                for k, v in x.items():
                    if isinstance(v, torch.Tensor):
                        x[k] = v.to(device)
                y = y.to(device)
            else:
                x, y = x.to(device), y.to(device)
            
            with torch.no_grad():
                fm_output = fm_da_model.infer(x)
            md_output = da_model.infer(x)
            
            distill_criterion = CrossEntropyLossSoft()
            total_loss = distill_criterion(md_output, fm_output)
            
            optimizer.zero_grad()
            total_loss.backward()
            optimizer.step()
            if scheduler is not None:
                scheduler.step()
            total_train_time += time.time() - cur_start_time
                
            if (iter_index + 1) % da_alg_hyp['val_freq'] == 0:
                from data import split_dataset
                cur_md = da_model.models_dict['main']
                md_for_test = deepcopy(da_model.models_dict['main'])
                da_model.models_dict['main'] = md_for_test
                cur_test_batch_dataset = split_dataset(test_dataset, da_alg_hyp['val_batch_size'], iter_index + 1)[0]
                cur_test_batch_dataloader = build_dataloader(cur_test_batch_dataset, da_alg_hyp['train_batch_size'], da_alg_hyp['num_workers'], False, False)
                da_model.to_eval_mode()
                cur_acc = da_model.get_accuracy(cur_test_batch_dataloader)
                accs += [{
                    'iter': iter_index + 1,
                    'acc': cur_acc
                }]
            pbar.set_description(f'loss: {total_loss:.6f}, cur_acc: {cur_acc:.4f}')
            
        time_usage = total_train_time
        da_metrics = {
            'accs': accs,
            'time': time_usage
        }     
        da_model = fm_da_model # 恢复大模型
                
        # 蒸馏结束
        
        
        if domain_index > 0:
            shutil.rmtree(os.path.join(log_dir, f'{task_name}/{domain_index}/backup_codes'))
        
        accs = da_metrics['accs']
        before_acc = accs[0]['acc']
        after_acc = accs[-1]['acc']
        
        tb_writer.add_scalars(f'accs/{task_name}', dict(before=before_acc, after=after_acc), domain_index)
        tb_writer.add_scalar(f'times/{task_name}', da_metrics['time'], domain_index)
        
        for _acc in accs:
            tb_writer.add_scalar('total_acc', _acc['acc'], _acc['iter'] + global_iter)
        global_iter += _acc['iter'] + 1
        
        scenario.next_domain()
        
        logger.info(f"task: {task_name}, domain {domain_index}, acc: {before_acc:.4f} -> "
                    f"{after_acc:.4f} ({da_metrics['time']:.2f}s)")
        
        global_avg_after_acc += after_acc
        cur_res = da_metrics
        res += [cur_res]
        write_json(os.path.join(log_dir, 'res.json'), res, backup=False)

    global_avg_after_acc /= (domain_index + 1)
    logger.info(f'-----> final metric: {global_avg_after_acc:.4f}')
    write_json(os.path.join(log_dir, f'res_{global_avg_after_acc:.4f}.json'), res, backup=False)