File size: 29,085 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
from ..api.model import ElasticDNN_OfflineFMModel, ElasticDNN_OfflineMDModel
from .user_impl import HuggingFaceModelAPI
from typing import List
from data.dataloader import build_dataloader
# from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel
import torch
import sys
from torch import nn
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from methods.elasticdnn.model.bert import ElasticBertUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, get_module, get_parameter, get_super_module
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg
import tqdm
from methods.feat_align.mmd import mmd_rbf
from copy import deepcopy
from typing import Optional, Union
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import tqdm
from methods.elasticdnn.model.vit import Linear_WrappedWithFBS
from utils.dl.common.model import get_model_device, get_model_size, set_module, get_module
import torch
from abc import abstractmethod
class ElasticDNN_OfflineFMModel_for_HuggingFaceFM(ElasticDNN_OfflineFMModel):
def set_hugging_face_api(self, hugging_face_api: HuggingFaceModelAPI):
self.hugging_face_api = hugging_face_api
def get_accuracy(self, test_loader, *args, **kwargs):
return self.hugging_face_api.get_accuracy(self.models_dict['main'], test_loader, self.device, *args, **kwargs)
def infer(self, x, *args, **kwargs):
return self.hugging_face_api.infer(self.models_dict['main'], x, *args, **kwargs)
def get_required_model_components(self) -> List[str]:
return ['main']
def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor):
res = FM_to_MD_HuggingFaceFM_Util()
res.set_hugging_face_api(self.hugging_face_api)
return res.init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], reducing_width_ratio, samples)
def forward_to_get_task_loss(self, x, y, *args, **kwargs):
return self.hugging_face_api.forward_to_get_task_loss(self.models_dict['main'], x, y)
def get_feature_hook(self) -> LayerActivation:
return self.hugging_face_api.get_feature_hook(self.models_dict['main'], self.device)
def get_elastic_dnn_util(self) -> ElasticDNNUtil:
res = ElasticHuggingFaceFMUtil()
res.set_hugging_face_api(self.hugging_face_api)
return res
def get_lora_util(self) -> FMLoRA_Util:
res = FMLoRA_HuggingFaceFM_Util()
res.set_hugging_face_api(self.hugging_face_api)
return res
def get_task_head_params(self):
return self.hugging_face_api.get_task_head_params(self.models_dict['main'])
class ElasticDNN_OfflineMDModel_for_HuggingFaceFM(ElasticDNN_OfflineMDModel):
def set_hugging_face_api(self, hugging_face_api: HuggingFaceModelAPI):
self.hugging_face_api = hugging_face_api
def get_required_model_components(self) -> List[str]:
return ['main']
def get_accuracy(self, test_loader, *args, **kwargs):
return self.hugging_face_api.get_accuracy(self.models_dict['main'], test_loader, self.device, *args, **kwargs)
def infer(self, x, *args, **kwargs):
return self.hugging_face_api.infer(self.models_dict['main'], x, *args, **kwargs)
def forward_to_get_task_loss(self, x, y, *args, **kwargs):
return self.hugging_face_api.forward_to_get_task_loss(self.models_dict['main'], x, y)
def get_feature_hook(self) -> LayerActivation:
return self.hugging_face_api.get_feature_hook(self.models_dict['main'], self.device)
def get_distill_loss(self, student_output, teacher_output):
return CrossEntropyLossSoft()(student_output, teacher_output)
def get_matched_param_of_fm(self, self_param_name, fm: nn.Module):
if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]):
return None
p = get_parameter(self.models_dict['main'], self_param_name)
if p.dim() == 0:
return None
elif p.dim() == 1:
return None
layers_name = self.hugging_face_api.get_qkv_proj_ff1_ff2_layer_names()
if len(layers_name[0]) == 4:
qkv_names = [layer[0] for layer in layers_name]
qkv_proj_names = [layer[1] for layer in layers_name]
ff1_names = [layer[-2] for layer in layers_name]
ff2_names = [layer[-1] for layer in layers_name]
qkv_weight_names = [n + '.weight' for n in qkv_names]
if self_param_name in qkv_weight_names:
ss = self_param_name.split('.')
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv'
fm_qkv = get_module(fm, fm_qkv_name)
fm_abs_name = '.'.join(ss[0: -1]) + '.abs'
fm_abs = get_module(fm, fm_abs_name)
# print(fm_qkv_name, fm_abs_name, fm)
return torch.cat([
fm_qkv.weight.data, # task-agnositc params
torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0) # task-specific params (LoRA)
], dim=0)
else:
q_names = [layer[0] for layer in layers_name]
k_names = [layer[1] for layer in layers_name]
v_names = [layer[2] for layer in layers_name]
qkv_proj_names = [layer[3] for layer in layers_name]
ff1_names = [layer[-2] for layer in layers_name]
ff2_names = [layer[-1] for layer in layers_name]
qkv_weight_names = [n + '.weight' for n in q_names + k_names + v_names]
if self_param_name in qkv_weight_names:
ss = self_param_name.split('.')
# raise NotImplementedError() # TODO:
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv'
fm_qkv = get_module(fm, fm_qkv_name)
fm_abs_name = '.'.join(ss[0: -1]) + '.ab'
fm_abs = get_module(fm, fm_abs_name)
# print(fm_qkv_name, fm_abs_name, fm)
return torch.cat([
fm_qkv.weight.data, # task-agnositc params
fm_abs[1].weight @ fm_abs[0].weight
], dim=0)
# elif 'to_qkv.bias' in self_param_name:
# ss = self_param_name.split('.')
# fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
# return get_parameter(fm, fm_qkv_name)
ff1_weight_names = [n + '.linear.weight' for n in ff1_names]
ff2_weight_names = [n + '.weight' for n in ff2_names]
if self_param_name in ff1_weight_names:
fm_param_name = self_param_name.replace('.linear', '')
return get_parameter(fm, fm_param_name)
if self_param_name in ff2_weight_names:
fm_param_name = self_param_name
return get_parameter(fm, fm_param_name)
return None
class ElasticHuggingFaceFMUtil(ElasticDNNUtil):
def set_hugging_face_api(self, hugging_face_api: HuggingFaceModelAPI):
self.hugging_face_api = hugging_face_api
def convert_raw_dnn_to_master_dnn(self, raw_dnn: nn.Module, r: float, ignore_layers=[]):
assert len(ignore_layers) == 0, 'not supported yet'
raw_vit = deepcopy(raw_dnn)
# set_module(module, 'patch_embed.proj', ProjConv_WrappedWithFBS(module.patch_embed.proj, r))
layers = self.hugging_face_api.get_qkv_proj_ff1_ff2_layer_names()
ff1_names = [layer[-2] for layer in layers]
for name, module in raw_vit.named_modules():
# if name.endswith('attn'):
# set_module(module, 'qkv', ToQKV_WrappedWithFBS(module.qkv, r))
if name in ff1_names:
# set_module(get_super_module(module, name), name.split('.')[-1], Linear_WrappedWithFBS(module, r))
set_module(raw_vit, name, Linear_WrappedWithFBS(module, r))
return raw_vit
def set_master_dnn_sparsity(self, master_dnn: nn.Module, sparsity: float):
return super().set_master_dnn_sparsity(master_dnn, sparsity)
def select_most_rep_sample(self, master_dnn: nn.Module, samples: torch.Tensor):
# print(samples)
# return samples[0].unsqueeze(0)
res = {k: v[0: 1] for k, v in samples.items()}
return res
def extract_surrogate_dnn_via_samples(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False):
sample = self.select_most_rep_sample(master_dnn, samples)
# assert sample.dim() == 4 and sample.size(0) == 1
# print('before')
master_dnn.eval()
self.clear_cached_channel_attention_in_master_dnn(master_dnn)
with torch.no_grad():
master_dnn_output = master_dnn(**sample)
# print('after')
boosted_vit = deepcopy(master_dnn)
def get_unpruned_indexes_from_channel_attn(channel_attn: torch.Tensor, k):
assert channel_attn.size(0) == 1, 'use A representative sample to generate channel attentions'
res = channel_attn[0].nonzero(as_tuple=True)[0] # should be one-dim
return res
unpruned_indexes_of_layers = {}
layers_name = self.hugging_face_api.get_qkv_proj_ff1_ff2_layer_names()
ff1_names = [layer[-2] for layer in layers]
ff2_names = [layer[-1] for layer in layers]
for ff1_name, ff2_name in zip(ff1_names, ff2_names):
ff_0 = get_module(boosted_vit, ff1_name)
# ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k)
ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0]
ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes])
new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
if ff_0.linear.bias is not None:
new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
# set_module(get_super_module(ff_0, ff1_name), ff1_name.split('.')[-1],
# nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
set_module(boosted_vit, ff1_name,
nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
ff_1 = get_module(boosted_vit, ff2_name)
new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
if ff_1.bias is not None:
new_ff_1.bias.data.copy_(ff_1.bias.data)
# set_module(get_super_module(ff_1), ff2_name.split('.')[-1], new_ff_1)
set_module(boosted_vit, ff2_name, new_ff_1)
unpruned_indexes_of_layers[f'{ff1_name}.0.weight'] = ff_0_unpruned_indexes
surrogate_dnn = boosted_vit
surrogate_dnn.eval()
surrogate_dnn = surrogate_dnn.to(get_model_device(master_dnn))
# logger.debug(surrogate_dnn)
with torch.no_grad():
surrogate_dnn_output = surrogate_dnn(**sample)
output_diff = ((surrogate_dnn_output - master_dnn_output) ** 2).sum()
# assert output_diff < 1e-4, output_diff
logger.info(f'output diff of master and surrogate DNN: {output_diff}')
logger.debug(f'example output of master/surrogate: {master_dnn_output.sum(0)[0: 10]}, {surrogate_dnn_output.sum(0)[0: 10]}')
# logger.info(f'\nonly prune mlp!!!!\n')
# logger.info(f'\nonly prune mlp!!!!\n')
if return_detail:
return boosted_vit, unpruned_indexes_of_layers
return boosted_vit
def extract_surrogate_dnn_via_samples_with_perf_test(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False):
master_dnn_size = get_model_size(master_dnn, True)
master_dnn_latency = self._get_model_latency(master_dnn, samples, 50,
get_model_device(master_dnn), 50, False)
res = self.extract_surrogate_dnn_via_samples(master_dnn, samples, return_detail)
if not return_detail:
surrogate_dnn = res
else:
surrogate_dnn, unpruned_indexes_of_layers = res
surrogate_dnn_size = get_model_size(surrogate_dnn, True)
surrogate_dnn_latency = self._get_model_latency(master_dnn, samples, 50,
get_model_device(master_dnn), 50, False)
logger.info(f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample) -> '
f'surrogate DNN ({surrogate_dnn_size:.3f}MB, {surrogate_dnn_latency:.4f}s/sample)\n'
f'(model size: β {(master_dnn_size / surrogate_dnn_size):.2f}x, '
f'latency: β {(master_dnn_latency / surrogate_dnn_latency):.2f}x)')
return res
def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int,
device: str, warmup_sample_num: int, return_detail=False):
import time
if isinstance(model_input_size, tuple):
dummy_input = torch.rand(model_input_size).to(device)
else:
dummy_input = model_input_size
model = model.to(device)
model.eval()
# warm up
with torch.no_grad():
for _ in range(warmup_sample_num):
model(**dummy_input)
infer_time_list = []
if device == 'cuda' or 'cuda' in str(device):
with torch.no_grad():
for _ in range(sample_num):
s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
s.record()
model(**dummy_input)
e.record()
torch.cuda.synchronize()
cur_model_infer_time = s.elapsed_time(e) / 1000.
infer_time_list += [cur_model_infer_time]
else:
with torch.no_grad():
for _ in range(sample_num):
start = time.time()
model(**dummy_input)
cur_model_infer_time = time.time() - start
infer_time_list += [cur_model_infer_time]
avg_infer_time = sum(infer_time_list) / sample_num
if return_detail:
return avg_infer_time, infer_time_list
return avg_infer_time
class FMLoRA_HuggingFaceFM_Util(FMLoRA_Util):
def set_hugging_face_api(self, hugging_face_api: HuggingFaceModelAPI):
self.hugging_face_api = hugging_face_api
@torch.no_grad()
def add_lora_ab_to_fm(self, fm: nn.Module, ab_r: int, samples: dict):
fm.eval()
if isinstance(samples, dict):
o1 = fm(**samples)
else:
o1 = fm(samples)
layers_name = self.hugging_face_api.get_qkv_proj_ff1_ff2_layer_names()
if len(layers_name[0]) == 4:
qkv_names = [layer[0] for layer in layers_name]
from ..pipeline.offline.fm_lora.vit import ToQKV_WrappedWithLoRA
for name, module in fm.named_modules():
if name in qkv_names:
set_module(fm, name, ToQKV_WrappedWithLoRA(module, ab_r))
else:
qkv_names = [layer[0] for layer in layers_name] + [layer[1] for layer in layers_name] + [layer[2] for layer in layers_name]
from ..pipeline.offline.fm_lora.bert import ToQKV_WrappedWithLoRA
for name, module in fm.named_modules():
if name in qkv_names:
set_module(fm, name, ToQKV_WrappedWithLoRA(module, ab_r))
if isinstance(samples, dict):
o2 = fm(**samples)
else:
o2 = fm(samples)
if isinstance(o1, tuple):
o1 = o1[-1]
o2 = o2[-1]
output_diff = ((o1 - o2) ** 2).sum()
assert output_diff < 1e-5
return fm
@torch.no_grad()
def absorb_lora_and_recover_net_structure(self, fm: nn.Module, samples: dict):
fm.eval()
# print('absorb lora before')
if isinstance(samples, dict):
o1 = fm(**samples)
else:
o1 = fm(samples)
from ..pipeline.offline.fm_lora.vit import ToQKV_WrappedWithLoRA as ToQKV_WrappedWithLoRA1
from ..pipeline.offline.fm_lora.bert import ToQKV_WrappedWithLoRA as ToQKV_WrappedWithLoRA2
for name, module in fm.named_modules():
if isinstance(module, ToQKV_WrappedWithLoRA1):
qkv = module.qkv
fm_abs = module.abs
fm_abs_weight = torch.cat([_abs[1].weight @ _abs[0].weight for _abs in fm_abs], dim=0)
qkv.weight.add_(fm_abs_weight)
set_module(fm, name, qkv)
elif isinstance(module, ToQKV_WrappedWithLoRA2):
fc = module.fc
ab = module.ab
fc.weight.add_(ab[1].weight @ ab[0].weight)
set_module(fm, name, fc)
# print('absorb lora after')
if isinstance(samples, dict):
o2 = fm(**samples)
else:
o2 = fm(samples)
if isinstance(o1, tuple):
o1 = o1[-1]
o2 = o2[-1]
output_diff = ((o1 - o2) ** 2).sum()
assert output_diff < 1e-6, output_diff
return fm
class FM_to_MD_HuggingFaceFM_Util(FM_to_MD_Util):
def set_hugging_face_api(self, hugging_face_api: HuggingFaceModelAPI):
self.hugging_face_api = hugging_face_api
def init_md_from_fm_by_reducing_width(self, fm: nn.Module, reducing_width_ratio: int) -> nn.Module:
fm_vit = deepcopy(fm)
# for block in fm_vit.bert.encoder.layer:
# set_module(block, 'attention.self', BertSelfAttentionPrunable.init_from_exist_self_attn(block.attention.self))
def _f(n):
return int(n // reducing_width_ratio)
# def _rand_indexes(n):
# return torch.randperm(n)[0: int(n // reducing_width_ratio)]
def l1_max_indexes(p: torch.Tensor, dim=0):
assert dim in [0, 1]
assert p.dim() in [1, 2, 4]
if dim == 1:
p = p.T
p_norm = p.abs().contiguous().view(p.size(0), -1).sum(dim=1)
n = p.size(0)
return p_norm.argsort(descending=True)[0: int(n // reducing_width_ratio)].sort()[0]
layers_name = self.hugging_face_api.get_qkv_proj_ff1_ff2_layer_names()
if len(layers_name[0]) == 6:
q_names = [layer[0] for layer in layers_name]
k_names = [layer[1] for layer in layers_name]
v_names = [layer[2] for layer in layers_name]
qkv_proj_names = [layer[3] for layer in layers_name]
ff1_names = [layer[-2] for layer in layers_name]
ff2_names = [layer[-1] for layer in layers_name]
for q_name, k_name, v_name, qkv_proj_name, ff1_name, ff2_name in zip(q_names, k_names, v_names, qkv_proj_names, ff1_names, ff2_names):
for k in [q_name, k_name, v_name]:
qkv = get_module(fm_vit, k)
new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features),
qkv.bias is not None, qkv.weight.device)
indexes = l1_max_indexes(qkv.weight.data, 0)
new_qkv.weight.data.copy_(qkv.weight.data[indexes])
if qkv.bias is not None:
new_qkv.bias.data.copy_(qkv.bias.data[indexes])
set_module(fm_vit, k, new_qkv)
proj = get_module(fm_vit, qkv_proj_name)
new_proj = nn.Linear(_f(proj.in_features), proj.out_features,
proj.bias is not None, proj.weight.device)
new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
if proj.bias is not None:
new_proj.bias.data.copy_(proj.bias.data)
set_module(fm_vit, qkv_proj_name, new_proj)
fc1 = get_module(fm_vit, ff1_name)
new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features),
fc1.bias is not None, fc1.weight.device)
indexes = l1_max_indexes(fc1.weight.data, 0)
new_fc1.weight.data.copy_(fc1.weight.data[indexes])
if fc1.bias is not None:
new_fc1.bias.data.copy_(fc1.bias.data[indexes])
set_module(fm_vit, ff1_name, new_fc1)
fc2 = get_module(fm_vit, ff2_name)
new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features,
fc2.bias is not None, fc2.weight.device)
new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)])
if fc2.bias is not None:
new_fc2.bias.data.copy_(fc2.bias.data)
set_module(fm_vit, ff2_name, new_fc2)
if len(layers_name[0]) == 4:
qkv_names = [layer[0] for layer in layers_name]
qkv_proj_names = [layer[1] for layer in layers_name]
ff1_names = [layer[-2] for layer in layers_name]
ff2_names = [layer[-1] for layer in layers_name]
for qkv_name, qkv_proj_name, ff1_name, ff2_name in zip(qkv_names, qkv_proj_names, ff1_names, ff2_names):
qkv = get_module(fm_vit, qkv_name)
new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features),
qkv.bias is not None, qkv.weight.device)
indexes = l1_max_indexes(qkv.weight.data, 0)
new_qkv.weight.data.copy_(qkv.weight.data[indexes])
if qkv.bias is not None:
new_qkv.bias.data.copy_(qkv.bias.data[indexes])
set_module(fm_vit, qkv_name, new_qkv)
proj = get_module(fm_vit, qkv_proj_name)
new_proj = nn.Linear(_f(proj.in_features), proj.out_features,
proj.bias is not None, proj.weight.device)
new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
if proj.bias is not None:
new_proj.bias.data.copy_(proj.bias.data)
set_module(fm_vit, qkv_proj_name, new_proj)
fc1 = get_module(fm_vit, ff1_name)
new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features),
fc1.bias is not None, fc1.weight.device)
indexes = l1_max_indexes(fc1.weight.data, 0)
new_fc1.weight.data.copy_(fc1.weight.data[indexes])
if fc1.bias is not None:
new_fc1.bias.data.copy_(fc1.bias.data[indexes])
set_module(fm_vit, ff1_name, new_fc1)
fc2 = get_module(fm_vit, ff2_name)
new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features,
fc2.bias is not None, fc2.weight.device)
new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)])
if fc2.bias is not None:
new_fc2.bias.data.copy_(fc2.bias.data)
set_module(fm_vit, ff2_name, new_fc2)
return fm_vit
def init_md_from_fm_by_reducing_width_with_perf_test(self, fm: nn.Module, reducing_width_ratio: int,
samples: torch.Tensor) -> nn.Module:
fm_size = get_model_size(fm, True)
fm_latency = self._get_model_latency(fm, samples, 20,
get_model_device(fm), 20, False)
master_dnn = self.init_md_from_fm_by_reducing_width(fm, reducing_width_ratio)
master_dnn_size = get_model_size(master_dnn, True)
logger.debug(f'inited master DNN: {master_dnn}')
master_dnn_latency = self._get_model_latency(master_dnn, samples, 20,
get_model_device(master_dnn), 20, False)
logger.info(f'init master DNN (w/o FBS yet) by reducing foundation model\'s width (by {reducing_width_ratio:d}x)')
logger.info(f'foundation model ({fm_size:.3f}MB, {fm_latency:.4f}s/sample) -> '
f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample)\n'
f'(model size: β {(fm_size / master_dnn_size):.2f}x, '
f'latency: β {(fm_latency / master_dnn_latency):.2f}x)')
return master_dnn
def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int,
device: str, warmup_sample_num: int, return_detail=False):
import time
if isinstance(model_input_size, tuple):
dummy_input = torch.rand(model_input_size).to(device)
else:
dummy_input = model_input_size
model = model.to(device)
model.eval()
# warm up
with torch.no_grad():
for _ in range(warmup_sample_num):
if isinstance(dummy_input, dict):
model(**dummy_input)
else:
model(dummy_input)
infer_time_list = []
if device == 'cuda' or 'cuda' in str(device):
with torch.no_grad():
for _ in range(sample_num):
s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
s.record()
if isinstance(dummy_input, dict):
model(**dummy_input)
else:
model(dummy_input)
e.record()
torch.cuda.synchronize()
cur_model_infer_time = s.elapsed_time(e) / 1000.
infer_time_list += [cur_model_infer_time]
else:
with torch.no_grad():
for _ in range(sample_num):
start = time.time()
if isinstance(dummy_input, dict):
model(**dummy_input)
else:
model(dummy_input)
cur_model_infer_time = time.time() - start
infer_time_list += [cur_model_infer_time]
avg_infer_time = sum(infer_time_list) / sample_num
if return_detail:
return avg_infer_time, infer_time_list
return avg_infer_time |