File size: 66,951 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
from transformers import BlipForQuestionAnswering, BlipConfig,BlipModel
import torch
from torch import nn
from abc import ABC, abstractmethod
from copy import deepcopy
from typing import Optional, Union
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import tqdm

from utils.dl.common.model import get_model_device, get_model_latency, get_model_size, set_module
from utils.dl.common.model import set_module, get_module, get_super_module
from utils.common.log import logger
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util, LoRA
from transformers.models.blip.modeling_blip import BlipAttention
from transformers.models.blip.modeling_blip_text import BlipTextSelfAttention,BlipTextAttention,BlipTextSelfOutput
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from new_impl.cv.elasticdnn.model.base import Abs, KTakesAll, ElasticDNNUtil, Layer_WrappedWithFBS

from typing import Optional, Tuple
import math

def blip(num_classes):
    model =  BlipForQuestionAnswering.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained')
    # linear  = model.text_decoder.cls.predictions.decoder
    # new_linear = nn.Linear(linear.in_features,30524,bias = True)
    # set_module(model,'text_decoder.cls.predictions.decoder',new_linear)
    return model
# def blip(num_classes):
#     model = BlipForQuestionAnswering.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained')
#     linear = model.text_decoder.cls.predictions.decoder
#     new_linear = nn.Linear(linear.in_features,num_classes,bias = True)
#     set_module(model,'text_decoder.cls.predictions.decoder',new_linear)
#     return model
# class blip(nn.Module):
#     def __init__(self,num_classes):
#         super(blip,self).__init__()
#         self.blip = BlipModel.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained')
#         self.cls = nn.Linear(768,num_classes*3)

#     def forward(self,**sample):
#         output = self.blip(**sample)[-1]#output the last hidden
#         output  = self.cls(output[1])
#         return output

    
class ToQKV_WrappedWithLoRA(nn.Module):
    def __init__(self, fc: nn.Linear, ab_r: int):
        super(ToQKV_WrappedWithLoRA, self).__init__()
        
        self.fc = fc
        self.ab = self.create_ab_as_linear(fc.weight.data, ab_r)
        
    def create_ab_as_linear(self, fc_weight: torch.Tensor, ab_r: int):
        res = nn.Sequential(
            LoRA(fc_weight.size(1), fc_weight.size(0) // ab_r, bias=False),
            LoRA(fc_weight.size(0) // ab_r, fc_weight.size(0), bias=False)
        ).to(fc_weight.device)
        nn.init.kaiming_uniform_(res[0].weight, a=5 ** 0.5)
        nn.init.zeros_(res[1].weight)
        return res
        
    def forward(self, x):
        x1 = self.fc(x)
        x2 = self.ab(x)
        return x1 + x2
    

class FMLoRA_blip_Util(FMLoRA_Util):
    
    @torch.no_grad()
    def add_lora_ab_to_fm(self, fm: nn.Module, ab_r: int, samples: dict):
        fm.eval()
        
        # print(samples)
        for k, v in samples.items():
            if isinstance(v, torch.Tensor):
                samples[k] = v.to(get_model_device(fm))
        
        o1 = fm.generate(**samples)
        #o1 = fm(**samples)
        for name, module in fm.named_modules():
            if name.endswith(('query', 'key', 'value')):
                set_module(fm, name, ToQKV_WrappedWithLoRA(module, ab_r))
            elif name.endswith('.qkv'):
                set_module(fm, name, ToQKV_WrappedWithLoRA(module, ab_r))


        o2 = fm.generate(**samples)
        #o2 = fm(**samples)
        if isinstance(o1, tuple):
            o1 = o1[-1]
            o2 = o2[-1]
        output_diff = ((o1 - o2) ** 2).sum()
        assert output_diff < 1e-5
        return fm
    
    @torch.no_grad()
    def absorb_lora_and_recover_net_structure(self, fm: nn.Module, samples: dict):       
        fm.eval()
        # print('absorb lora before')

        for k, v in samples.items():
            if isinstance(v, torch.Tensor):
                samples[k] = v.to(get_model_device(fm))
        
        o1 = fm.generate(**samples)
        
        for name, module in fm.named_modules():
            if not isinstance(module, ToQKV_WrappedWithLoRA):
                continue
            
            fc = module.fc
            ab = module.ab

            fc.weight.add_(ab[1].weight @ ab[0].weight)
            
            set_module(fm, name, fc)
        
        # print('absorb lora after')
        o2 = fm.generate(**samples)
        
        if isinstance(o1, tuple):
            o1 = o1[-1]
            o2 = o2[-1]
        output_diff = ((o1 - o2) ** 2).sum()
        assert output_diff < 1e-6, output_diff
        
        return fm
    

####Here start with Fbs

class blipTextAttentionPrunable(BlipTextSelfAttention):
    def __init__(self,is_cross_attention):
        config = BlipConfig.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained')
        super(blipTextAttentionPrunable,self).__init__(config.text_config,is_cross_attention)    
        
    def save_attn_gradients(self, attn_gradients):
        self.attn_gradients = attn_gradients

    def get_attn_gradients(self):
        return self.attn_gradients

    def save_attention_map(self, attention_map):
        self.attention_map = attention_map

    def get_attention_map(self):
        return self.attention_map

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
        else:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))

        query_layer = self.transpose_for_scores(mixed_query_layer)

        past_key_value = (key_layer, value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            seq_length = hidden_states.size()[1]
            position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
            position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
            distance = position_ids_l - position_ids_r
            positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function)
            attention_scores = attention_scores + attention_mask.to(attention_scores.device)

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs_dropped = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs_dropped = attention_probs_dropped * head_mask

        context_layer = torch.matmul(attention_probs_dropped, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (-1,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        outputs = outputs + (past_key_value,)
        return outputs
    @staticmethod
    def init_from_exist_self_attn(attn: BlipTextSelfAttention,is_cross_attention):
        # print(attn)
        
        res = blipTextAttentionPrunable(is_cross_attention)
        
        for attr in dir(attn):
            # if str(attr) in ['transpose_for_scores'] or str(attr).startswith('_'):
            #     continue
            # if isinstance(getattr(attn, attr), nn.Module):
                # print(attr)
                
            if isinstance(getattr(attn, attr), nn.Module):
                try:
                    # print(attr, 'ok')
                    setattr(res, attr, getattr(attn, attr))
                    
                except Exception as e:
                    print(attr, str(e))
        
        
        
        return res
    

    
# class blipSelfTextAttentionPrunable(BlipTextAttention):
#     def __init__(self, config, is_cross_attention=False):
#         self.self = blipTextAttentionPrunable(config, is_cross_attention)
#         self.output = BlipTextSelfOutput(config)
#         self.pruned_heads = set()
#         super(blipSelfTextAttentionPrunable,self).__init__(config)

#     def prune_heads(self, heads):
#         if len(heads) == 0:
#             return
#         heads, index = find_pruneable_heads_and_indices(
#             heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
#         )

#         # Prune linear layers
#         self.self.query = prune_linear_layer(self.self.query, index)
#         self.self.key = prune_linear_layer(self.self.key, index)
#         self.self.value = prune_linear_layer(self.self.value, index)
#         self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

#         # Update hyper params and store pruned heads
#         self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
#         self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
#         self.pruned_heads = self.pruned_heads.union(heads)

#     def forward(
#         self,
#         hidden_states: torch.Tensor,
#         attention_mask: Optional[torch.FloatTensor] = None,
#         head_mask: Optional[torch.FloatTensor] = None,
#         encoder_hidden_states: Optional[torch.FloatTensor] = None,
#         encoder_attention_mask: Optional[torch.FloatTensor] = None,
#         past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
#         output_attentions: Optional[bool] = False,
#     ) -> Tuple[torch.Tensor]:
#         self_outputs = self.self(
#             hidden_states,
#             attention_mask,
#             head_mask,
#             encoder_hidden_states,
#             encoder_attention_mask,
#             past_key_value,
#             output_attentions,
#         )
#         attention_output = self.output(self_outputs[0], hidden_states)
#         outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
#         return outputs
#     @staticmethod
#     def init_from_exist_self_attn(attn: BlipTextAttention,config,is_cross_attention):
#         # print(attn)
        
#         res = blipTextAttentionPrunable(config,is_cross_attention)
        
#         for attr in dir(attn):
#             # if str(attr) in ['transpose_for_scores'] or str(attr).startswith('_'):
#             #     continue
#             # if isinstance(getattr(attn, attr), nn.Module):
#                 # print(attr)
                
#             if isinstance(getattr(attn, attr), nn.Module):
#                 try:
#                     # print(attr, 'ok')
#                     setattr(res, attr, getattr(attn, attr))
                    
#                 except Exception as e:
#                     print(attr, str(e))
        
        
        
#         return res
    





class blipSelfAttentionPrunable(BlipAttention):
    def __init__(self):
        config = BlipConfig.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained')
        super(blipSelfAttentionPrunable, self).__init__(config.vision_config)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, -1).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        bsz, tgt_len, embed_dim = hidden_states.size()

        mixed_qkv = (
            self.qkv(hidden_states)
            .reshape(bsz, tgt_len, 3, self.num_heads, -1)
            .permute(2, 0, 3, 1, 4)
        )
        query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))

        attention_scores = attention_scores * self.scale

        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)

        new_context_layer_shape = context_layer.size()[:-2] + (-1,)
        context_layer = context_layer.reshape(new_context_layer_shape)

        output = self.projection(context_layer)

        outputs = (output, attention_probs) if output_attentions else (output, None)

        return outputs
    
    @staticmethod
    def init_from_exist_self_attn(attn: BlipAttention):
        # print(attn)
        
        res = blipSelfAttentionPrunable()
        
        for attr in dir(attn):
            # if str(attr) in ['transpose_for_scores'] or str(attr).startswith('_'):
            #     continue
            # if isinstance(getattr(attn, attr), nn.Module):
                # print(attr)
                
            if isinstance(getattr(attn, attr), nn.Module):
                try:
                    # print(attr, 'ok')
                    setattr(res, attr, getattr(attn, attr))
                    
                except Exception as e:
                    print(attr, str(e))
        
        
        
        return res


class FM_to_MD_blip_Util(FM_to_MD_Util):
    def init_md_from_fm_by_reducing_width(self, fm: nn.Module, reducing_width_ratio: int) -> nn.Module:
        fm_vis = deepcopy(fm)
        config = BlipConfig.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained')
        # for block in fm_vis.text_encoder.encoder.layer:
        #     set_module(block, 'attention.self', blipTextAttentionPrunable.init_from_exist_self_attn(block.attention.self,False))
        # for block in fm_vis.text_encoder.encoder.layer:    
        #     set_module(block, 'crossattention.self', blipTextAttentionPrunable.init_from_exist_self_attn(block.crossattention.self,True))

        for block in fm_vis.text_decoder.bert.encoder.layer:
            set_module(block, 'attention.self', blipTextAttentionPrunable.init_from_exist_self_attn(block.attention.self,False))
        for block in fm_vis.text_decoder.bert.encoder.layer:    
            set_module(block, 'crossattention.self', blipTextAttentionPrunable.init_from_exist_self_attn(block.crossattention.self,True))    
        # for block in fm_vis.vision_model.encoder.layers:
        #     set_module(block,'self_attn',blipSelfAttentionPrunable.init_from_exist_self_attn(block.self_attn))
        def _f(n):
            return int(n // reducing_width_ratio)
        
        # def _rand_indexes(n):
            # return torch.randperm(n)[0: int(n // reducing_width_ratio)]
            
        def l1_max_indexes(p: torch.Tensor, dim=0):
            assert dim in [0, 1]
            assert p.dim() in [1, 2, 4]
            
            if dim == 1:
                p = p.T
            
            p_norm = p.abs().contiguous().view(p.size(0), -1).sum(dim=1)
            n = p.size(0)
            return p_norm.argsort(descending=True)[0: int(n // reducing_width_ratio)].sort()[0]
        
        for block_i, block in enumerate(fm_vis.text_decoder.bert.encoder.layer):
            for k in ['query', 'key', 'value']:
                qkv = get_module(block, f'attention.self.{k}')

                new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), 
                                    qkv.bias is not None, qkv.weight.device)
                indexes = l1_max_indexes(qkv.weight.data, 0)
                
                new_qkv.weight.data.copy_(qkv.weight.data[indexes])
                if qkv.bias is not None:
                    new_qkv.bias.data.copy_(qkv.bias.data[indexes])
                set_module(block, f'attention.self.{k}', new_qkv)
            
            proj = get_module(block, f'attention.output.dense')
            new_proj = nn.Linear(_f(proj.in_features), proj.out_features, 
                                proj.bias is not None, proj.weight.device)
            new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
            if proj.bias is not None:
                new_proj.bias.data.copy_(proj.bias.data)
            set_module(block, f'attention.output.dense', new_proj)
            
            fc1 = get_module(block, f'intermediate.dense')
            new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features), 
                                fc1.bias is not None, fc1.weight.device)
            indexes = l1_max_indexes(fc1.weight.data, 0)
            new_fc1.weight.data.copy_(fc1.weight.data[indexes])
            if fc1.bias is not None:
                new_fc1.bias.data.copy_(fc1.bias.data[indexes])
            set_module(block, f'intermediate.dense', new_fc1)

            fc2 = get_module(block, f'output.dense')
            new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features, 
                                fc2.bias is not None, fc2.weight.device)
            new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)])
            if fc2.bias is not None:
                new_fc2.bias.data.copy_(fc2.bias.data)
            set_module(block, f'output.dense', new_fc2)


        for block_i, block in enumerate(fm_vis.text_decoder.bert.encoder.layer):
            for k in ['query', 'key', 'value']:
                qkv = get_module(block, f'crossattention.self.{k}')

                new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), 
                                    qkv.bias is not None, qkv.weight.device)
                indexes = l1_max_indexes(qkv.weight.data, 0)
                
                new_qkv.weight.data.copy_(qkv.weight.data[indexes])
                if qkv.bias is not None:
                    new_qkv.bias.data.copy_(qkv.bias.data[indexes])
                set_module(block, f'crossattention.self.{k}', new_qkv)
            
            proj = get_module(block, f'crossattention.output.dense')
            new_proj = nn.Linear(_f(proj.in_features), proj.out_features, 
                                proj.bias is not None, proj.weight.device)
            new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
            if proj.bias is not None:
                new_proj.bias.data.copy_(proj.bias.data)
            set_module(block, f'crossattention.output.dense', new_proj)
            
        
        # for block_i, block in enumerate(fm_vis.text_encoder.encoder.layer):
        #     for k in ['query', 'key', 'value']:
        #         qkv = get_module(block, f'attention.self.{k}')

        #         new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), 
        #                             qkv.bias is not None, qkv.weight.device)
        #         indexes = l1_max_indexes(qkv.weight.data, 0)
                
        #         new_qkv.weight.data.copy_(qkv.weight.data[indexes])
        #         if qkv.bias is not None:
        #             new_qkv.bias.data.copy_(qkv.bias.data[indexes])
        #         set_module(block, f'attention.self.{k}', new_qkv)
            
        #     proj = get_module(block, f'attention.output.dense')
        #     new_proj = nn.Linear(_f(proj.in_features), proj.out_features, 
        #                         proj.bias is not None, proj.weight.device)
        #     new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
        #     if proj.bias is not None:
        #         new_proj.bias.data.copy_(proj.bias.data)
        #     set_module(block, f'attention.output.dense', new_proj)
            
        #     fc1 = get_module(block, f'intermediate.dense')
        #     new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features), 
        #                         fc1.bias is not None, fc1.weight.device)
        #     indexes = l1_max_indexes(fc1.weight.data, 0)
        #     new_fc1.weight.data.copy_(fc1.weight.data[indexes])
        #     if fc1.bias is not None:
        #         new_fc1.bias.data.copy_(fc1.bias.data[indexes])
        #     set_module(block, f'intermediate.dense', new_fc1)

        #     fc2 = get_module(block, f'output.dense')
        #     new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features, 
        #                         fc2.bias is not None, fc2.weight.device)
        #     new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)])
        #     if fc2.bias is not None:
        #         new_fc2.bias.data.copy_(fc2.bias.data)
        #     set_module(block, f'output.dense', new_fc2)


        # for block_i, block in enumerate(fm_vis.text_encoder.encoder.layer):
        #     for k in ['query', 'key', 'value']:
        #         qkv = get_module(block, f'crossattention.self.{k}')

        #         new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), 
        #                             qkv.bias is not None, qkv.weight.device)
        #         indexes = l1_max_indexes(qkv.weight.data, 0)
                
        #         new_qkv.weight.data.copy_(qkv.weight.data[indexes])
        #         if qkv.bias is not None:
        #             new_qkv.bias.data.copy_(qkv.bias.data[indexes])
        #         set_module(block, f'crossattention.self.{k}', new_qkv)
            
        #     proj = get_module(block, f'crossattention.output.dense')
        #     new_proj = nn.Linear(_f(proj.in_features), proj.out_features, 
        #                         proj.bias is not None, proj.weight.device)
        #     new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
        #     if proj.bias is not None:
        #         new_proj.bias.data.copy_(proj.bias.data)
        #     set_module(block, f'crossattention.output.dense', new_proj)
            
        
        
        # for block_i, block in enumerate(fm_vis.vision_model.encoder.layers):
        #     qkv = block.self_attn.qkv
            
        #     new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), 
        #                         qkv.bias is not None, qkv.weight.device)
        #     indexes = l1_max_indexes(qkv.weight.data, 0)
            
        #     new_qkv.weight.data.copy_(qkv.weight.data[indexes])
        #     if qkv.bias is not None:
        #         new_qkv.bias.data.copy_(qkv.bias.data[indexes])
        #     set_module(fm_vis, f'vision_model.encoder.layers.{block_i}.self_attn.qkv', new_qkv)

        #     proj = block.self_attn.projection
        #     new_proj = nn.Linear(_f(proj.in_features), proj.out_features, 
        #                         proj.bias is not None, proj.weight.device)
        #     new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
        #     if proj.bias is not None:
        #         new_proj.bias.data.copy_(proj.bias.data)
        #     set_module(fm_vis, f'vision_model.encoder.layers.{block_i}.self_attn.projection', new_proj)
            
        #     fc1 = block.mlp.fc1
        #     new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features), 
        #                         fc1.bias is not None, fc1.weight.device)
        #     indexes = l1_max_indexes(fc1.weight.data, 0)
        #     new_fc1.weight.data.copy_(fc1.weight.data[indexes])
        #     if fc1.bias is not None:
        #         new_fc1.bias.data.copy_(fc1.bias.data[indexes])
        #     set_module(fm_vis, f'vision_model.encoder.layers.{block_i}.mlp.fc1', new_fc1)

        #     fc2 = block.mlp.fc2
        #     new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features, 
        #                         fc2.bias is not None, fc2.weight.device)
        #     new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)])
        #     if fc2.bias is not None:
        #         new_fc2.bias.data.copy_(fc2.bias.data)
        #     set_module(fm_vis, f'vision_model.encoder.layers.{block_i}.mlp.fc2', new_fc2)

        return fm_vis
    
    def init_md_from_fm_by_reducing_width_with_perf_test(self, fm: nn.Module, reducing_width_ratio: int,
                                                         samples: torch.Tensor) -> nn.Module:
        fm_size = get_model_size(fm, True)
        fm_latency = self._get_model_latency(fm, samples, 20, 
                                               get_model_device(fm), 20, False)
        
        master_dnn = self.init_md_from_fm_by_reducing_width(fm, reducing_width_ratio)
        master_dnn_size = get_model_size(master_dnn, True)
        logger.debug(f'inited master DNN: {master_dnn}')
        master_dnn_latency = self._get_model_latency(master_dnn, samples, 20, 
                                               get_model_device(master_dnn), 20, False)

        logger.info(f'init master DNN (w/o FBS yet) by reducing foundation model\'s width (by {reducing_width_ratio:d}x)')
        logger.info(f'foundation model ({fm_size:.3f}MB, {fm_latency:.4f}s/sample) -> '
                    f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample)\n'
                    f'(model size: ↓ {(fm_size / master_dnn_size):.2f}x, '
                    f'latency: ↓ {(fm_latency / master_dnn_latency):.2f}x)')
        
        return master_dnn
    
    def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int, 
                           device: str, warmup_sample_num: int, return_detail=False):
        import time
        
        if isinstance(model_input_size, tuple):
            dummy_input = torch.rand(model_input_size).to(device)
        else:
            dummy_input = model_input_size
            
        model = model.to(device)
        model.eval()
        
        # warm up
        with torch.no_grad():
            for _ in range(warmup_sample_num):
                model(**dummy_input)
                
        infer_time_list = []
                
        if device == 'cuda' or 'cuda' in str(device):
            with torch.no_grad():
                for _ in range(sample_num):
                    s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
                    s.record()
                    model(**dummy_input)
                    e.record()
                    torch.cuda.synchronize()
                    cur_model_infer_time = s.elapsed_time(e) / 1000.
                    infer_time_list += [cur_model_infer_time]

        else:
            with torch.no_grad():
                for _ in range(sample_num):
                    start = time.time()
                    model(**dummy_input)
                    cur_model_infer_time = time.time() - start
                    infer_time_list += [cur_model_infer_time]
                    
        avg_infer_time = sum(infer_time_list) / sample_num

        if return_detail:
            return avg_infer_time, infer_time_list
        return avg_infer_time


####Here starts with index

class SqueezeLast(nn.Module):
    def __init__(self):
        super(SqueezeLast, self).__init__()
    
    def forward(self, x):
        return x.squeeze(-1)
    
    
class ProjConv_WrappedWithFBS(Layer_WrappedWithFBS):
    def __init__(self, proj: nn.Conv2d, r):
        super(ProjConv_WrappedWithFBS, self).__init__()
        
        self.proj = proj
        
        # for conv: (B, C_in, H, W) -> (B, C_in) -> (B, C_out)
        # for mlp in ViT: (B, #patches, D: dim of patches embedding) -> (B, D) -> (B, C_out)
        self.fbs = nn.Sequential(
            Abs(),
            nn.AdaptiveAvgPool1d(1),
            SqueezeLast(),
            nn.Linear(proj.in_channels, proj.out_channels // r),
            nn.ReLU(),
            nn.Linear(proj.out_channels // r, proj.out_channels),
            nn.ReLU()
        )
        
        nn.init.constant_(self.fbs[6].bias, 1.)
        nn.init.kaiming_normal_(self.fbs[6].weight)
        
    
    def forward(self, x):
        if self.use_cached_channel_attention and self.cached_channel_attention is not None:
            channel_attention = self.cached_channel_attention
        else:
            self.cached_raw_channel_attention = self.fbs(x)
            self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
            
            channel_attention = self.cached_channel_attention
        
        raw_res = self.proj(x)
        
        return channel_attention.unsqueeze(1) * raw_res # TODO:


class Linear_WrappedWithFBS(Layer_WrappedWithFBS):
    def __init__(self, linear: nn.Linear, r):
        super(Linear_WrappedWithFBS, self).__init__()
        
        self.linear = linear
        
        # for conv: (B, C_in, H, W) -> (B, C_in) -> (B, C_out)
        # for mlp in ViT: (B, #patches, D: dim of patches embedding) -> (B, D) -> (B, C_out)
        self.fbs = nn.Sequential(
            Rearrange('b n d -> b d n'),
            Abs(),
            nn.AdaptiveAvgPool1d(1),
            SqueezeLast(),
            nn.Linear(linear.in_features, linear.out_features // r),
            nn.ReLU(),
            nn.Linear(linear.out_features // r, linear.out_features),
            nn.ReLU()
        )
        
        nn.init.constant_(self.fbs[6].bias, 1.)
        nn.init.kaiming_normal_(self.fbs[6].weight)
        
    
    def forward(self, x):
        if self.use_cached_channel_attention and self.cached_channel_attention is not None:
            channel_attention = self.cached_channel_attention
        else:
            self.cached_raw_channel_attention = self.fbs(x)
            self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
            
            channel_attention = self.cached_channel_attention
        
        raw_res = self.linear(x)
        
        return channel_attention.unsqueeze(1) * raw_res
    
    
class ToQKV_WrappedWithFBS(Layer_WrappedWithFBS):
    """
    This regards to_q/to_k/to_v as a whole (in fact it consists of multiple heads) and prunes it.
    It seems different channels of different heads are pruned according to the input. 
    This is different from "removing some head" or "removing the same channels in each head".
    """
    def __init__(self, to_qkv: nn.Linear, r):
        super(ToQKV_WrappedWithFBS, self).__init__()
        
        # self.to_qkv = to_qkv
        
        self.to_qk = nn.Linear(to_qkv.in_features, to_qkv.out_features // 3 * 2, bias=to_qkv.bias is not None)
        self.to_v = nn.Linear(to_qkv.in_features, to_qkv.out_features // 3, bias=to_qkv.bias is not None)
        self.to_qk.weight.data.copy_(to_qkv.weight.data[0: to_qkv.out_features // 3 * 2])
        if to_qkv.bias is not None:
            self.to_qk.bias.data.copy_(to_qkv.bias.data[0: to_qkv.out_features // 3 * 2])
        self.to_v.weight.data.copy_(to_qkv.weight.data[to_qkv.out_features // 3 * 2: ])
        if to_qkv.bias is not None:
            self.to_v.bias.data.copy_(to_qkv.bias.data[to_qkv.out_features // 3 * 2: ])
                
        self.fbs = nn.Sequential(
            Rearrange('b n d -> b d n'),
            Abs(),
            nn.AdaptiveAvgPool1d(1),
            SqueezeLast(),
            nn.Linear(to_qkv.in_features, to_qkv.out_features // 3 // r),
            nn.ReLU(),
            # nn.Linear(to_qkv.out_features // 3 // r, to_qkv.out_features // 3),
            nn.Linear(to_qkv.out_features // 3 // r, self.to_v.out_features),
            nn.ReLU()
        )
        
        nn.init.constant_(self.fbs[6].bias, 1.)
        nn.init.kaiming_normal_(self.fbs[6].weight)
    
    def forward(self, x):
        if self.use_cached_channel_attention and self.cached_channel_attention is not None:
            channel_attention = self.cached_channel_attention
        else:
            self.cached_raw_channel_attention = self.fbs(x)
            
            # print()
            # for attn in self.cached_raw_channel_attention.chunk(3, dim=1)[0: 1]:
            #     print(self.cached_raw_channel_attention.size(), attn.size())
            #     print(self.k_takes_all.k)
            #     print(attn[0].nonzero(as_tuple=True)[0].size(), attn[0])
                
            self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
            
            
            # for attn in self.cached_channel_attention.chunk(3, dim=1)[0: 1]:
            #     print(self.cached_channel_attention.size(), attn.size())
            #     print(self.k_takes_all.k)
            #     print(attn[0].nonzero(as_tuple=True)[0].size(), attn[0])
            # print()
            
            channel_attention = self.cached_channel_attention
        
        qk = self.to_qk(x)
        v = channel_attention.unsqueeze(1) * self.to_v(x)
        return torch.cat([qk, v], dim=-1)
        
        # qkv = raw_res.chunk(3, dim = -1)
        
        # raw_v = qkv[2]
        # print('raw_k, raw_v', qkv[0].sum((0, 1))[0: 10], qkv[0].sum((0, 1)).nonzero(as_tuple=True)[0].size(),
        #       qkv[1].sum((0, 1))[0: 10], qkv[1].sum((0, 1)).nonzero(as_tuple=True)[0].size(),)
        # print('raw_v', raw_v.size(), raw_v.sum((0, 1))[0: 10], raw_v.sum((0, 1)).nonzero(as_tuple=True)[0].size())
        
        # qkv_attn = channel_attention.chunk(3, dim=-1)
        # print('attn', [attn[0][0: 10] for attn in qkv_attn])
        # print(channel_attention.unsqueeze(1).size(), raw_res.size())
        # print('fbs', channel_attention.size(), raw_res.size())
        # return channel_attention.unsqueeze(1) * raw_res
    
    
class StaticFBS(nn.Module):
    def __init__(self, static_channel_attention):
        super(StaticFBS, self).__init__()
        assert static_channel_attention.dim() == 2 and static_channel_attention.size(0) == 1
        self.static_channel_attention = nn.Parameter(static_channel_attention, requires_grad=False) # (1, dim)
        
    def forward(self, x):
        # print('staticfbs', x, self.static_channel_attention.unsqueeze(1))
        return x * self.static_channel_attention.unsqueeze(1)
    
    
class ElasticblipUtil(ElasticDNNUtil):
    def convert_raw_dnn_to_master_dnn(self, raw_dnn: nn.Module, r: float, ignore_layers=[]):
        assert len(ignore_layers) == 0, 'not supported yet'

        raw_vit = deepcopy(raw_dnn)
        
        # set_module(module, 'patch_embed.proj', ProjConv_WrappedWithFBS(module.patch_embed.proj, r))
                
        for name, module in raw_vit.named_modules():
            # if name.endswith('attn'):
            #     set_module(module, 'qkv', ToQKV_WrappedWithFBS(module.qkv, r))
            if name.endswith('intermediate'):
                set_module(module, 'dense', Linear_WrappedWithFBS(module.dense, r))
            elif name.endswith('mlp'):
                set_module(module, 'fc1', Linear_WrappedWithFBS(module.fc1, r))
        
        return raw_vit
    
    def set_master_dnn_sparsity(self, master_dnn: nn.Module, sparsity: float):
        # for name, module in master_dnn.named_modules():
        #     if not name.endswith('attn'):
        #         continue
            
        #     q_features = module.qkv.to_qk.out_features // 2
            
        #     if (q_features - int(q_features * sparsity)) % module.num_heads != 0:
        #         # tune sparsity to ensure #unpruned channel % num_heads == 0
        #         # so that the pruning seems to reduce the dim_head of each head
        #         tuned_sparsity = 1. - int((q_features - int(q_features * sparsity)) / module.num_heads) * module.num_heads / q_features
        #         logger.debug(f'tune sparsity from {sparsity:.2f} to {tuned_sparsity}')
        #         sparsity = tuned_sparsity
        #         break
        
        return super().set_master_dnn_sparsity(master_dnn, sparsity)
    
    def select_most_rep_sample(self, master_dnn: nn.Module, samples: torch.Tensor):
        # print(samples)
        # return samples[0].unsqueeze(0)
        res = {k: v[0: 1] for k, v in samples.items()}
        return res
        
    def extract_surrogate_dnn_via_samples(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False):
        sample = self.select_most_rep_sample(master_dnn, samples)
        # assert sample.dim() == 4 and sample.size(0) == 1
        
        # print('before')
        master_dnn.eval()
        self.clear_cached_channel_attention_in_master_dnn(master_dnn)
        with torch.no_grad():
            master_dnn_output = master_dnn(**sample)
            
        # print('after')
        
        boosted_vit = deepcopy(master_dnn)
        
        def get_unpruned_indexes_from_channel_attn(channel_attn: torch.Tensor, k):
            assert channel_attn.size(0) == 1, 'use A representative sample to generate channel attentions'
            
            # print('attn_in_unpruned', channel_attn[0][0: 10])
            
            res = channel_attn[0].nonzero(as_tuple=True)[0] # should be one-dim

            # res = channel_attn[0].argsort(descending=True)[0: -int(channel_attn.size(1) * k)].sort()[0]
            
            # g = channel_attn
            # k = g.size(1) - int(g.size(1) * k)
            # res = g.topk(k, 1)[1][0].sort()[0]
            
            return res
        
        unpruned_indexes_of_layers = {}
        
        # for attn, ff in boosted_vit.transformer.layers:
        # for block_i, block in enumerate(boosted_vit.blocks):
        for block_i, block in enumerate(boosted_vit.text_encoder.encoder.layer):
            # attn = block.attn
            # ff = block.mlp
            
            ff_0 = get_module(block, f'intermediate.dense')
            # ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k)
            ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0]
            ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes])
            new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
            new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
            if ff_0.linear.bias is not None:
                new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
            set_module(block, 'intermediate.dense', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
            
            ff_1 = get_module(block, f'output.dense')
            new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
            new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
            if ff_1.bias is not None:
                new_ff_1.bias.data.copy_(ff_1.bias.data)
            set_module(block, 'output.dense', new_ff_1)
            
            unpruned_indexes_of_layers[f'text_encoder.encoder.layer.{block_i}.intermediate.dense.0.weight'] = ff_0_unpruned_indexes
        for block_i,block in enumerate(boosted_vit.vision_model.encoder.layers):

            attn = block.self_attn
            ff = block.mlp
            ff_0 = ff.fc1
            # ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k)
            ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0]
            ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes])
            new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
            new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
            if ff_0.linear.bias is not None:
                new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
            set_module(ff, 'fc1', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
            
            ff_1 = ff.fc2
            new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
            new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
            if ff_1.bias is not None:
                new_ff_1.bias.data.copy_(ff_1.bias.data)
            set_module(ff, 'fc2', new_ff_1)
            
            unpruned_indexes_of_layers[f'vision_model.encoder.layers.{block_i}.mlp.fc1.0.weight'] = ff_0_unpruned_indexes


        for block_i, block in enumerate(boosted_vit.text_decoder.bert.encoder.layer):
            # attn = block.attn
            # ff = block.mlp
            
            ff_0 = get_module(block, f'intermediate.dense')
            # ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k)
            ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0]
            ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes])
            new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
            new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
            if ff_0.linear.bias is not None:
                new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
            set_module(block, 'intermediate.dense', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
            
            ff_1 = get_module(block, f'output.dense')
            new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
            new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
            if ff_1.bias is not None:
                new_ff_1.bias.data.copy_(ff_1.bias.data)
            set_module(block, 'output.dense', new_ff_1)
            
            unpruned_indexes_of_layers[f'text_decoder.bert.encoder.layer.{block_i}.intermediate.dense.0.weight'] = ff_0_unpruned_indexes
        surrogate_dnn = boosted_vit
        surrogate_dnn.eval()
        surrogate_dnn = surrogate_dnn.to(get_model_device(master_dnn))
        # logger.debug(surrogate_dnn)
        with torch.no_grad():
            surrogate_dnn_output = surrogate_dnn(**sample)
            
        output_diff = ((surrogate_dnn_output.logits - master_dnn_output.logits) ** 2).sum()
        # assert output_diff < 1e-4, output_diff
        logger.info(f'output diff of master and surrogate DNN: {output_diff}')
        # logger.debug(f'example output of master/surrogate: {master_dnn_output.sum(0)[0: 10]}, {surrogate_dnn_output.sum(0)[0: 10]}')
        # logger.info(f'\nonly prune mlp!!!!\n')
        # logger.info(f'\nonly prune mlp!!!!\n')
        
        if return_detail:
            return boosted_vit, unpruned_indexes_of_layers
        
        return boosted_vit
    
    def extract_surrogate_dnn_via_samples_with_perf_test(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False):
        master_dnn_size = get_model_size(master_dnn, True)
        master_dnn_latency = self._get_model_latency(master_dnn, samples, 50, 
                                               get_model_device(master_dnn), 50, False)
        
        res = self.extract_surrogate_dnn_via_samples(master_dnn, samples, return_detail)
        if not return_detail:
            surrogate_dnn = res
        else:
            surrogate_dnn, unpruned_indexes_of_layers = res
        surrogate_dnn_size = get_model_size(surrogate_dnn, True)
        surrogate_dnn_latency = self._get_model_latency(master_dnn, samples, 50, 
                                               get_model_device(master_dnn), 50, False)

        logger.info(f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample) -> '
                    f'surrogate DNN ({surrogate_dnn_size:.3f}MB, {surrogate_dnn_latency:.4f}s/sample)\n'
                    f'(model size: ↓ {(master_dnn_size / surrogate_dnn_size):.2f}x, '
                    f'latency: ↓ {(master_dnn_latency / surrogate_dnn_latency):.2f}x)')
        
        return res
    
    def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int, 
                           device: str, warmup_sample_num: int, return_detail=False):
        import time
        
        if isinstance(model_input_size, tuple):
            dummy_input = torch.rand(model_input_size).to(device)
        else:
            dummy_input = model_input_size
            
        model = model.to(device)
        model.eval()
        
        # warm up
        with torch.no_grad():
            for _ in range(warmup_sample_num):
                model(**dummy_input)
                
        infer_time_list = []
                
        if device == 'cuda' or 'cuda' in str(device):
            with torch.no_grad():
                for _ in range(sample_num):
                    s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
                    s.record()
                    model(**dummy_input)
                    e.record()
                    torch.cuda.synchronize()
                    cur_model_infer_time = s.elapsed_time(e) / 1000.
                    infer_time_list += [cur_model_infer_time]

        else:
            with torch.no_grad():
                for _ in range(sample_num):
                    start = time.time()
                    model(**dummy_input)
                    cur_model_infer_time = time.time() - start
                    infer_time_list += [cur_model_infer_time]
                    
        avg_infer_time = sum(infer_time_list) / sample_num

        if return_detail:
            return avg_infer_time, infer_time_list
        return avg_infer_time



#####Here starts with online

from typing import List
from data.dataloader import build_dataloader
# from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel
from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel

import torch
import sys
from torch import nn
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from methods.elasticdnn.model.vilt import ElasticViltUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from methods.ewc.ewc_elasticfm import OnlineEWCModel
import tqdm
# from methods.feat_align.mmd import mmd_rbf
from copy import deepcopy


class ElasticDNN_VQAOnlineModel(ElasticDNN_OnlineModel):
    @torch.no_grad()
    def sd_feedback_to_md(self, after_da_sd, unpruned_indexes_of_layers):
        self.models_dict['sd'] = after_da_sd
        self.before_da_md = deepcopy(self.models_dict['md'])
        
        logger.info('\n\nsurrogate DNN feedback to master DNN...\n\n')
        # one-to-one
        
        cur_unpruned_indexes = None
        cur_unpruned_indexes_name = None
        
        for p_name, p in self.models_dict['sd'].named_parameters():
            matched_md_param = self.get_md_matched_param_of_sd_param(p_name)
            logger.debug(f'if feedback: {p_name}')
            if matched_md_param is None:
                continue
            logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_md_param.size()}')
            # average
            # setattr(matched_md_module, matched_md_param_name, (matched_md_param + p) / 2.)
            
            if p_name in unpruned_indexes_of_layers.keys():
                cur_unpruned_indexes = unpruned_indexes_of_layers[p_name]
                cur_unpruned_indexes_name = p_name
            
            if p.size() != matched_md_param.size():
                logger.debug(f'cur unpruned indexes: {cur_unpruned_indexes_name}, {cur_unpruned_indexes.size()}')
                
                if p.dim() == 1: # norm
                    new_p = deepcopy(matched_md_param)
                    new_p[cur_unpruned_indexes] = p
                elif p.dim() == 2: # linear
                    if p.size(0) < matched_md_param.size(0): # output pruned
                        new_p = deepcopy(matched_md_param)
                        new_p[cur_unpruned_indexes] = p
                    else: # input pruned
                        new_p = deepcopy(matched_md_param)
                        new_p[:, cur_unpruned_indexes] = p
                p = new_p
                
            assert p.size() == matched_md_param.size(), f'{p.size()}, {matched_md_param.size()}'
            
            # if 'head' in p_name:
            if False:
                continue
            # if False:
                # self.last_trained_cls_indexes 
                assert hasattr(self, 'last_trained_cls_indexes')
                print(self.last_trained_cls_indexes)

                diff = self._compute_diff(matched_md_param, p)
                # matched_md_param[self.last_trained_cls_indexes].copy_(p[self.last_trained_cls_indexes.to(self.device)])
                matched_md_param.copy_(p)
                logger.debug(f'SPECIFIC FOR CL HEAD | end feedback: {p_name}, diff: {diff:.6f}')
            else:
                diff = self._compute_diff(matched_md_param, (matched_md_param + p) / 2.)
                matched_md_param.copy_((matched_md_param + p) / 2.)
                logger.debug(f'end feedback: {p_name}, diff: {diff:.6f}')
            
    def add_cls_in_head(self, num_cls): # NOTE: 
        head: nn.Linear = get_module(self.models_dict['md'], 'cls')
        
        new_head = nn.Linear(head.in_features, head.out_features + num_cls, head.bias is not None, device=self.device)
        
        # nn.init.zeros_(new_head.weight.data)
        # nn.init.zeros_(new_head.bias.data)
        
        new_head.weight.data[0: head.out_features] = deepcopy(head.weight.data)
        new_head.bias.data[0: head.out_features] = deepcopy(head.bias.data)
        set_module(self.models_dict['md'], 'cls', new_head)
        set_module(self.models_dict['fm'], 'cls', new_head)
        
    def get_accuracy(self, test_loader, *args, **kwargs):
        acc = 0
        sample_num = 0
        
        from methods.elasticdnn.api.model import VQAScore
        vqa_score = VQAScore()
        
        self.to_eval_mode()
        
        # from transformers import AutoProcessor
        # processor = AutoProcessor.from_pretrained("new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained")
        # with torch.no_grad():
        #     pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
        #     for batch_index, (x, y, t) in pbar:
        #         for k, v in x.items():
        #             if isinstance(v, torch.Tensor):
        #                 x[k] = v.to(self.device)
        #         if isinstance(y,dict):
        #             for k, v in y.items():
        #                 y[k] = v.to(self.device)
        #         else:
        #             y = y.to(self.device)
                
        #         output = self.models_dict['main'].generate(**x)
        #         total = 0
        #         idx = 0
        #         for i in output:
        #             val = processor.decode(i, skip_special_tokens=True)
        #             text = t[idx]
        #             if val == text:
        #                 total += 1
        #             idx += 1
                    
        #         #vqa_score.update(output, y.labels)
        #         acc = total / (idx+1)
        #         #pbar.set_description(f'cur_batch_total: {len(y['label'])}, cur_batch_acc: {vqa_score.compute():.4f}')
        #         pbar.set_description(f'cur_batch_total: {len(y["labels"])}, cur_batch_acc: {acc:.4f}')
        # return acc
        with torch.no_grad():
            pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
            for batch_index, (x, y) in pbar:
                for k, v in x.items():
                    if isinstance(v, torch.Tensor):
                        x[k] = v.to(self.device)
                y = y.to(self.device)
                output = self.infer(x)
                
                vqa_score.update(output, y)
                
                pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_acc: {vqa_score.compute():.4f}')

        return float(vqa_score.compute())
    
    def get_elastic_dnn_util(self) -> ElasticDNNUtil:
        return ElasticblipUtil()
    
    def get_fm_matched_param_of_md_param(self, md_param_name):
        # only between qkv.weight, norm.weight/bias
        self_param_name = md_param_name
        fm = self.models_dict['fm']
        if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]):
            return None
        
        p = get_parameter(self.models_dict['md'], self_param_name)
        if p.dim() == 0:
            return None
        elif p.dim() == 1 and ('LayerNorm' in self_param_name or 'layernorm' in self_param_name) and 'weight' in self_param_name:
            return get_parameter(fm, self_param_name)
        
        # 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
        if ('query' in self_param_name or 'key' in self_param_name or \
            'value' in self_param_name) and ('weight' in self_param_name):
            
            ss = self_param_name.split('.')
            
            fm_qkv_name = '.'.join(ss[0: -1]) + '.fc'
            fm_qkv = get_module(fm, fm_qkv_name)
            
            fm_abs_name = '.'.join(ss[0: -1]) + '.ab'
            fm_abs = get_module(fm, fm_abs_name)
            
            # NOTE: unrecoverable operation! multiply LoRA parameters to allow it being updated in update_fm_param()
            # TODO: if fm will be used for inference, _mul_lora_weight will not be applied!
            if not hasattr(fm_abs, '_mul_lora_weight'):
                logger.debug(f'set _mul_lora_weight in {fm_abs_name}')
                setattr(fm_abs, '_mul_lora_weight', 
                        nn.Parameter(fm_abs[1].weight @ fm_abs[0].weight))
            
            return torch.cat([
                fm_qkv.weight.data, # task-agnositc params
                fm_abs._mul_lora_weight.data # task-specific params (LoRA)
            ], dim=0)
            
        # elif 'to_qkv.bias' in self_param_name:
        #     ss = self_param_name.split('.')
            
        #     fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
        #     return get_parameter(fm, fm_qkv_name)
            
        elif 'dense' in self_param_name and 'weight' in self_param_name:
            fm_param_name = self_param_name.replace('.linear', '')
            return get_parameter(fm, fm_param_name)

        # elif 'mlp.fc2' in self_param_name and 'weight' in self_param_name:
        #     fm_param_name = self_param_name
        #     return get_parameter(fm, fm_param_name)
        
        else:
            # return get_parameter(fm, self_param_name)
            return None
        
    def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param):
        if not ('query' in md_param_name or 'key' in md_param_name or 'value' in md_param_name):
            matched_fm_param_ref = self.get_fm_matched_param_of_md_param(md_param_name)
            matched_fm_param_ref.copy_(cal_new_fm_param_by_md_param)
        else:
            new_fm_attn_weight, new_fm_lora_weight = torch.chunk(cal_new_fm_param_by_md_param, 2, 0)
            
            ss = md_param_name.split('.')
            fm = self.models_dict['fm']
            
            # update task-agnostic parameters
            fm_qkv_name = '.'.join(ss[0: -1]) + '.fc'
            fm_qkv = get_module(fm, fm_qkv_name)
            fm_qkv.weight.data.copy_(new_fm_attn_weight)
            
            # update task-specific parameters
            fm_abs_name = '.'.join(ss[0: -1]) + '.ab'
            fm_abs = get_module(fm, fm_abs_name)
            fm_abs._mul_lora_weight.data.copy_(new_fm_lora_weight) # TODO: this will not be applied in inference!
        
    def get_md_matched_param_of_fm_param(self, fm_param_name):
        return super().get_md_matched_param_of_fm_param(fm_param_name)
    
    def get_md_matched_param_of_sd_param(self, sd_param_name):
        # raise NotImplementedError

        # only between qkv.weight, norm.weight/bias
        self_param_name = sd_param_name
        md = self.models_dict['md']
        if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]):
            return None
        
        p = get_parameter(self.models_dict['sd'], self_param_name)
        if p.dim() == 0:
            return None
        elif p.dim() == 1 and ('LayerNorm' in self_param_name or 'layernorm' in self_param_name) and 'weight' in self_param_name:
            return get_parameter(md, self_param_name)
        
        # 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
        if ('query' in self_param_name or 'key' in self_param_name or \
            'value' in self_param_name) and ('weight' in self_param_name):
            
        
            return get_parameter(md, self_param_name) # NOTE: no fbs in qkv!
            
        # elif 'to_qkv.bias' in self_param_name:
        #     ss = self_param_name.split('.')
            
        #     fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
        #     return get_parameter(fm, fm_qkv_name)
            
        elif 'intermediate.dense.0.weight' in self_param_name:
            fm_param_name = '.'.join(self_param_name.split('.')[0: -2]) + '.linear.weight'
            return get_parameter(md, fm_param_name)

        elif 'output.dense' in self_param_name and 'weight' in self_param_name:
            fm_param_name = self_param_name
            return get_parameter(md, fm_param_name)
        
        else:
            # return get_parameter(fm, self_param_name)
            return None
    
    def get_task_head_params(self):
        head = get_module(self.models_dict['sd'], 'cls')
        return list(head.parameters())
    
    
    
    
from typing import List, Tuple
from data.dataloader import build_dataloader
# from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel

import torch
import sys
from torch import nn
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from methods.elasticdnn.model.vit import ElasticViTUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, LayerActivation2, get_module, get_parameter, set_module
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from methods.feat_align.main import OnlineFeatAlignModel
import tqdm
from methods.feat_align.mmd import mmd_rbf
from copy import deepcopy


class VQAOnlineFeatAlignModel(OnlineFeatAlignModel):
    def get_trained_params(self):
        qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'query' in n or 'key' in n or 'value' in n or 'dense' in n or 'LayerNorm' in n]
        return qkv_and_norm_params
    
    def get_feature_hook(self):
        return LayerActivation(get_module(self.models_dict['main'], 'cls'), False, self.device)
    
    def forward_to_get_task_loss(self, x, y):
        self.to_train_mode()
        o = self.infer(x)
        return F.binary_cross_entropy_with_logits(o, y) * y.shape[1]
        # o = self.model_dict['main'](**x)
        # return o.loss
    
    def get_mmd_loss(self, f1, f2):
        return mmd_rbf(f1, f2)
    
    def infer(self, x, *args, **kwargs):
        return self.models_dict['main'](**x)
    
    def get_accuracy(self, test_loader, *args, **kwargs):
        acc = 0
        sample_num = 0
        
        from methods.elasticdnn.api.model import VQAScore
        vqa_score = VQAScore()
        
        self.to_eval_mode()
        
        # from transformers import AutoProcessor
        # processor = AutoProcessor.from_pretrained("new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained")
        # with torch.no_grad():
        #     pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
        #     for batch_index, (x, y, t) in pbar:
        #         for k, v in x.items():
        #             if isinstance(v, torch.Tensor):
        #                 x[k] = v.to(self.device)
        #         if isinstance(y,dict):
        #             for k, v in y.items():
        #                 y[k] = v.to(self.device)
        #         else:
        #             y = y.to(self.device)
                
        #         output = self.models_dict['main'].generate(**x)
        #         total = 0
        #         idx = 0
        #         for i in output:
        #             val = processor.decode(i, skip_special_tokens=True)
        #             text = t[idx]
        #             if val == text:
        #                 total += 1
        #             idx += 1
                    
        #         #vqa_score.update(output, y.labels)
        #         acc = total / (idx+1)
        #         #pbar.set_description(f'cur_batch_total: {len(y['label'])}, cur_batch_acc: {vqa_score.compute():.4f}')
        #         pbar.set_description(f'cur_batch_total: {len(y["labels"])}, cur_batch_acc: {acc:.4f}')
        # return acc
        with torch.no_grad():
            pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
            for batch_index, (x, y) in pbar:
                for k, v in x.items():
                    if isinstance(v, torch.Tensor):
                        x[k] = v.to(self.device)
                y = y.to(self.device)
                output = self.infer(x)
                
                vqa_score.update(output, y)
                
                pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_acc: {vqa_score.compute():.4f}')

        return float(vqa_score.compute())