File size: 5,833 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import torch
from methods.elasticdnn.api.model import ElasticDNN_OfflineSenClsFMModel, ElasticDNN_OfflineSenClsMDModel
from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from bert import FMLoRA_Bert_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from bert import FM_to_MD_Bert_Util
from bert import ElasticBertUtil
from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.common.log import logger
import torch.nn.functional as F
import sys
class ElasticDNN_BERT_OfflineClsFMModel(ElasticDNN_OfflineSenClsFMModel):
def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor):
return FM_to_MD_Bert_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'],
reducing_width_ratio, samples)
def get_feature_hook(self) -> LayerActivation:
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device)
def get_elastic_dnn_util(self) -> ElasticDNNUtil:
return ElasticBertUtil()
def forward_to_get_task_loss(self, x, y, *args, **kwargs):
self.to_train_mode()
pred = self.infer(x)
return F.cross_entropy(pred, y)
def get_lora_util(self) -> FMLoRA_Util:
return FMLoRA_Bert_Util()
def get_task_head_params(self):
head = get_module(self.models_dict['main'], 'classifier')
params_name = {k for k, v in head.named_parameters()}
logger.info(f'task head params: {params_name}')
return list(head.parameters())
class ElasticDNN_BERT_OfflineClsMDModel(ElasticDNN_OfflineSenClsMDModel):
def get_feature_hook(self) -> LayerActivation:
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device)
def forward_to_get_task_loss(self, x, y, *args, **kwargs):
self.to_train_mode()
return self.models_dict['main'](x, y)['total_loss']
if __name__ == '__main__':
from utils.dl.common.env import set_random_seed
set_random_seed(1)
# 1. init scenario
# scenario = build_scenario(
# source_datasets_name=['WI_Mask'],
# target_datasets_order=['MakeML_Mask'] * 10,
# da_mode='close_set',
# data_dirs={
# 'COCO2017': '/data/zql/datasets/coco2017',
# 'WI_Mask': '/data/zql/datasets/face_mask/WI/Medical mask/Medical mask/Medical Mask/images',
# 'VOC2012': '/data/datasets/VOCdevkit/VOC2012/JPEGImages',
# 'MakeML_Mask': '/data/zql/datasets/face_mask/make_ml/images'
# },
# )
scenario = build_scenario(
source_datasets_name=['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB',
'HL5Domains-NikonCoolpix4300'],
target_datasets_order=['HL5Domains-Nokia6610'] * 1, # TODO
da_mode='close_set',
data_dirs={
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}'
for k in ['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB',
'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610']}
},
)
# 2. init model
device = 'cuda'
from bert import bert_base_sen_cls
cls_model = bert_base_sen_cls(num_classes=scenario.num_classes)
# x = {'input_ids': torch.tensor([[ 101, 5672, 2033, 2011, 2151, 3793, 2017, 1005, 1040, 2066, 1012, 102]]).to(device),
# 'token_type_ids': torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).to(device),
# 'attention_mask': torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(device),
# 'return_dict': False}
# print(cls_model(x))
fm_models_dict_path = save_models_dict_for_init({
'main': cls_model
}, __file__, 'fm_bert_pretrained_with_cls_head')
fm_model = ElasticDNN_BERT_OfflineClsFMModel('fm', fm_models_dict_path, device)
# 3. init alg
models = {
'fm': fm_model
}
fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, 'result'))
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
# 4. run alg
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup
fm_lora_alg.run(scenario, hyps={
'launch_tbboard': False,
'samples_size': {'input_ids': torch.tensor([[ 101, 5672, 2033, 2011, 2151, 3793, 2017, 1005, 1040, 2066, 1012, 102]]).to(device),
'token_type_ids': torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).to(device),
'attention_mask': torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(device), 'return_dict': False},
'ab_r': 8,
'train_batch_size': 8,
'val_batch_size': 16,
'num_workers': 16,
'optimizer': 'AdamW',
'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999]},
'scheduler': 'LambdaLR',
'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 310000)},
'num_iters': 50000,
'val_freq': 400,
# 'fm_lora_ckpt_path': 'experiments/elasticdnn/vit_b_16/offline/fm_lora/cls/results/cls.py/20230607/999995-234355-trial/models/fm_best.pt'
}) |