File size: 6,480 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import logging
from typing import List, Tuple, Any

from ..graph import IllegalGraphError, Edge, Graph, Node, Model

_logger = logging.getLogger(__name__)


def model_to_pytorch_script(model: Model, placement=None) -> str:
    graphs = []
    total_pkgs = set()
    for name, cell in model.graphs.items():
        import_pkgs, graph_code = graph_to_pytorch_model(name, cell, placement=placement)
        graphs.append(graph_code)
        total_pkgs.update(import_pkgs)
    pkgs_code = '\n'.join(['import {}'.format(pkg) for pkg in total_pkgs])
    return _PyTorchScriptTemplate.format(pkgs_code, '\n\n'.join(graphs)).strip()


def _sorted_incoming_edges(node: Node) -> List[Edge]:
    edges = [edge for edge in node.graph.edges if edge.tail is node]
    _logger.debug('sorted_incoming_edges: %s', str(edges))
    if not edges:
        return []
    _logger.debug('all tail_slots are None: %s', str([edge.tail_slot for edge in edges]))
    if all(edge.tail_slot is None for edge in edges):
        return edges
    if all(isinstance(edge.tail_slot, int) for edge in edges):
        edges = sorted(edges, key=(lambda edge: edge.tail_slot))
        if [edge.tail_slot for edge in edges] == list(range(len(edges))):
            return edges
    raise IllegalGraphError(node.graph, 'Node {} has bad inputs'.format(node.name))


def _format_inputs(node: Node) -> Tuple[List[str], List[Any]]:
    """
    Format the inputs of a given node

    Parameters
    ----------
    node : Node
        a graph node, get and format its inputs

    Returns
    -------
    list
        the list of input names
    list
        the list of input values, if an input is simple type, record its value,
        otherwise the value is None
    """
    edges = _sorted_incoming_edges(node)
    inputs = []
    inputs_value = []
    for edge in edges:
        if edge.head.name == '_inputs':
            assert isinstance(edge.head_slot, int)
            if edge.head.operation.io_names is not None:
                # when input has names, e.g., forward(self, tensor1, tensor2, another_one)
                inputs.append(edge.head.operation.io_names[edge.head_slot])
            else:
                # when input has no name, e.g., forward(*_inputs)
                inputs.append('_inputs[{}]'.format(edge.head_slot))
            inputs_value.append(None)
        else:
            if edge.head_slot is None:
                # when the input comes from a single-output operator
                inputs.append('{}'.format(edge.head.name))
                if edge.head.operation.type in ('prim::Constant', 'prim::GetAttr') and \
                    'value' in edge.head.operation.parameters:
                    inputs_value.append(edge.head.operation.parameters['value'])
                else:
                    inputs_value.append(None)
            else:
                # when the input comes from a multi-output operator: needs to know which one it comes from
                inputs.append('{}[{}]'.format(edge.head.name, edge.head_slot))
                inputs_value.append(None)
    return inputs, inputs_value


def _remove_prefix(names, graph_name):
    """
    variables name (full name space) is too long,
    shorten the name by removing the prefix ```graph_name```
    """
    if isinstance(names, list):
        converted_names = []
        for name in names:
            if name.startswith(graph_name):
                converted_names.append(name[len(graph_name):])
            else:
                converted_names.append(name)
        return converted_names
    else:
        return names[len(graph_name):] if names.startswith(graph_name) else names


def graph_to_pytorch_model(graph_name: str, graph: Graph, placement=None) -> str:
    nodes = graph.topo_sort()

    # handle module node and function node differently
    # only need to generate code for module here
    import_pkgs = set()
    node_codes = []
    for node in nodes:
        if node.operation:
            if node.operation.type == 'shared':
                continue
            pkg_name = node.operation.get_import_pkg()
            if pkg_name is not None:
                import_pkgs.add(pkg_name)
            node_code = node.operation.to_init_code(_remove_prefix(node.name, graph_name))
            if node_code is not None:
                if placement and node in placement and len(node_code) > 0:
                    node_codes.append(f"{node_code}.to('{placement[node].device}')")
                else:
                    node_codes.append(node_code)

    if graph.input_node.operation.io_names is None:
        input_code = '*_inputs'
    else:
        for name in graph.input_node.operation.io_names:
            assert not name.startswith(graph_name)
        input_code = ', '.join(graph.input_node.operation.io_names)

    edge_codes = []
    sorted_nodes = graph.topo_sort()
    for node in sorted_nodes:
        if node.operation:
            inputs, inputs_value = _format_inputs(node)
            inputs = _remove_prefix(inputs, graph_name)
            node_name = _remove_prefix(node.name, graph_name)
            submodule_name = node_name
            if node.operation.type == 'shared':
                submodule_name = _remove_prefix(node.operation.parameters['reference'], graph_name)
            edge_codes.append(node.operation.to_forward_code(submodule_name, node_name, inputs, inputs_value))

    output_names, _ = _format_inputs(graph.output_node)
    output_names = _remove_prefix(output_names, graph_name)
    if not output_names:
        raise RuntimeError('"forward" function should have return value(s): {}, {}, {}'.format(output_names, graph_name, graph.output_node))
    output_code = ', '.join(output_names)

    linebreak = '\n        '
    return import_pkgs, _PyTorchModelTemplate.format(
        graph_name=('Graph' if graph_name == '_graph' else graph_name),
        inputs=input_code,
        outputs=output_code,
        nodes=linebreak.join(node_codes),
        edges=linebreak.join(edge_codes)
    )


# TODO: handle imports

_PyTorchScriptTemplate = '''
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

import nni.retiarii.nn.pytorch

{}

{}
'''

_PyTorchModelTemplate = '''
class {graph_name}(nn.Module):
    def __init__(self):
        super().__init__()
        {nodes}

    def forward(self, {inputs}):
        {edges}
        return {outputs}
'''