File size: 8,084 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from typing import (Any, Dict, List)
from . import debug_configs
__all__ = ['Operation', 'Cell']
def _convert_name(name: str) -> str:
"""
Convert the names using separator '.' to valid variable name in code
"""
return name.replace('.', '__')
class Operation:
"""
Calculation logic of a graph node.
The constructor is private. Use `Operation.new()` to create operation object.
`Operation` is a naive record.
Do not "mutate" its attributes or store information relate to specific node.
All complex logic should be implemented in `Node` class.
Attributes
----------
type
Operation type name (e.g. Conv2D).
If it starts with underscore, the "operation" is a special one (e.g. subgraph, input/output).
parameters
Arbitrary key-value parameters (e.g. kernel_size).
"""
def __init__(self, type_name: str, parameters: Dict[str, Any], _internal: bool = False):
assert _internal, '`Operation()` is private, use `Operation.new()` instead'
self.type: str = type_name
self.parameters: Dict[str, Any] = parameters
def to_init_code(self, field: str) -> str:
raise NotImplementedError()
def to_forward_code(self, field: str, output: str, inputs: List[str]) -> str:
raise NotImplementedError()
def _to_class_name(self) -> str:
raise NotImplementedError()
def __bool__(self) -> bool:
return True
@staticmethod
def new(type_name: str, parameters: Dict[str, Any] = {}, cell_name: str = None) -> 'Operation':
if type_name == '_cell':
# NOTE: cell_name is the same as its Node's name, when the cell is wrapped within the node
return Cell(cell_name, parameters)
else:
if debug_configs.framework.lower() in ('torch', 'pytorch'):
from .operation_def import torch_op_def # pylint: disable=unused-import
cls = PyTorchOperation._find_subclass(type_name)
elif debug_configs.framework.lower() in ('tf', 'tensorflow'):
from .operation_def import tf_op_def # pylint: disable=unused-import
cls = TensorFlowOperation._find_subclass(type_name)
else:
raise ValueError(f'Unsupported framework: {debug_configs.framework}')
return cls(type_name, parameters, _internal=True)
@classmethod
def _find_subclass(cls, subclass_name):
for subclass in cls.__subclasses__():
if subclass.__name__ == subclass_name:
return subclass
return cls
def __repr__(self):
type_name = type(self).__name__
args = [f'{key}={repr(value)}' for key, value in self.parameters.items()]
if type_name != self.type:
args = [f'type="{self.type}"'] + args
return f'{type_name}({", ".join(args)})'
def __eq__(self, other):
return type(other) is type(self) and other.type == self.type and other.parameters == self.parameters
class PyTorchOperation(Operation):
@classmethod
def _find_subclass(cls, subclass_name):
if cls.to_class_name(subclass_name) is not None:
subclass_name = 'ModuleOperator'
if cls.is_functional(subclass_name):
subclass_name = 'FunctionalOperator'
for subclass in cls.__subclasses__():
if hasattr(subclass, '_ori_type_name') and \
subclass_name in subclass._ori_type_name:
return subclass
return cls
@classmethod
def to_class_name(cls, type_name) -> str:
if type_name.startswith('__torch__.'):
return type_name[len('__torch__.'):]
elif type_name.startswith('__mutated__.'):
return type_name[len('__mutated__.'):]
else:
return None
@classmethod
def is_functional(cls, type_name) -> bool:
return type_name.startswith('Function.')
def _to_class_name(self) -> str:
if self.type.startswith('__torch__.'):
return self.type[len('__torch__.'):]
elif self.type.startswith('__mutated__.'):
return self.type[len('__mutated__.'):]
else:
return None
def get_import_pkg(self) -> str:
if self.type.startswith('__torch__.'):
return self.type[len('__torch__.'):].split('.')[0]
elif self.type.startswith('__mutated__.'):
return self.type[len('__mutated__.'):].split('.')[0]
else:
return None
def to_init_code(self, field: str) -> str:
if self._to_class_name() is not None:
assert 'positional_args' not in self.parameters
kw_params = ', '.join(f'{key}={repr(value)}' for key, value in self.parameters.items())
return f'self.{field} = {self._to_class_name()}({kw_params})'
return None
def to_forward_code(self, field: str, output: str, inputs: List[str], inputs_value: List[Any] = None) -> str:
"""
Parameters
----------
field : str
the name of member submodule
output : str
the output name (lvalue) of this line of code
inputs : List[str]
variables used in this line of code
inputs_value : List[Any]
some variables are actually constant, their real values are recorded in ```inputs_value```.
if not constant, we simply put None at the corresponding index
Returns
-------
str
generated code line
"""
if self.type == 'aten::slice':
raise RuntimeError('not supposed to have aten::slice operation')
else:
raise RuntimeError(f'unsupported operation type: {self.type} ? {self._to_class_name()}')
class TensorFlowOperation(Operation):
def _to_class_name(self) -> str:
return 'K.layers.' + self.type
class Cell(PyTorchOperation):
"""
TODO: this is pytorch cell
An operation reference to a subgraph.
Example code:
```
def __init__(...):
...
self.cell = CustomCell(...)
self.relu = K.layers.ReLU()
...
def forward(...):
...
x = self.cell(x)
...
```
In above example, node `self.cell`'s operation is `Cell(cell_name='CustomCell')`.
For comparison, `self.relu`'s operation is `Operation(type='ReLU')`.
TODO: parameters of subgraph (see `Node` class)
Attributes
----------
type
Always "_cell".
parameters
A dict with only one item; the key is "cell" and the value is cell's name.
framework
No real usage. Exists for compatibility with base class.
"""
def __init__(self, cell_name: str, parameters: Dict[str, Any] = {}):
self.type = '_cell'
self.cell_name = cell_name
self.parameters = parameters
def _to_class_name(self):
# TODO: ugly, think about how to refactor this part
return _convert_name(self.cell_name)
def to_forward_code(self, field: str, output: str, inputs: List[str], inputs_value: List[Any] = None) -> str:
return f'{output} = self.{field}({", ".join(inputs)})'
class _IOPseudoOperation(Operation):
"""
This is the pseudo operation used by I/O nodes.
The benefit is that users no longer need to verify `Node.operation is not None`,
especially in static type checking.
"""
def __init__(self, type_name: str, io_names: List = None):
assert type_name.startswith('_')
super(_IOPseudoOperation, self).__init__(type_name, {}, True)
self.io_names = io_names
def to_init_code(self, field: str) -> str:
raise ValueError(f'Cannot generate code for pseudo operation "{self.type}"')
def to_forward_code(self, field: str, output: str, inputs: List[str]) -> str:
raise ValueError(f'Cannot generate code for pseudo operation "{self.type}"')
def __bool__(self) -> bool:
return False
|