File size: 31,981 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import json
import logging
import os
import netifaces
from schema import And, Optional, Or, Regex, Schema, SchemaError
from nni.tools.package_utils import (
create_validator_instance,
get_all_builtin_names,
get_registered_algo_meta,
)
from .common_utils import get_yml_content, print_warning
from .constants import SCHEMA_PATH_ERROR, SCHEMA_RANGE_ERROR, SCHEMA_TYPE_ERROR
def setType(key, valueType):
'''check key type'''
return And(valueType, error=SCHEMA_TYPE_ERROR % (key, valueType.__name__))
def setChoice(key, *args):
'''check choice'''
return And(lambda n: n in args, error=SCHEMA_RANGE_ERROR % (key, str(args)))
def setNumberRange(key, keyType, start, end):
'''check number range'''
return And(
And(keyType, error=SCHEMA_TYPE_ERROR % (key, keyType.__name__)),
And(lambda n: start <= n <= end, error=SCHEMA_RANGE_ERROR % (key, '(%s,%s)' % (start, end))),
)
def setPathCheck(key):
'''check if path exist'''
return And(os.path.exists, error=SCHEMA_PATH_ERROR % key)
class AlgoSchema:
"""
This class is the schema of 'tuner', 'assessor' and 'advisor' sections of experiment configuraion file.
For example:
AlgoSchema('tuner') creates the schema of tuner section.
"""
def __init__(self, algo_type):
"""
Parameters:
-----------
algo_type: str
One of ['tuner', 'assessor', 'advisor'].
'tuner': This AlgoSchema class create the schema of tuner section.
'assessor': This AlgoSchema class create the schema of assessor section.
'advisor': This AlgoSchema class create the schema of advisor section.
"""
assert algo_type in ['tuner', 'assessor', 'advisor']
self.algo_type = algo_type
self.algo_schema = {
Optional('codeDir'): setPathCheck('codeDir'),
Optional('classFileName'): setType('classFileName', str),
Optional('className'): setType('className', str),
Optional('classArgs'): dict,
Optional('includeIntermediateResults'): setType('includeIntermediateResults', bool),
Optional('gpuIndices'): Or(int, And(str, lambda x: len([int(i) for i in x.split(',')]) > 0), error='gpuIndex format error!'),
}
self.builtin_keys = {
'tuner': 'builtinTunerName',
'assessor': 'builtinAssessorName',
'advisor': 'builtinAdvisorName'
}
self.builtin_name_schema = {}
for k, n in self.builtin_keys.items():
self.builtin_name_schema[k] = {Optional(n): setChoice(n, *get_all_builtin_names(k+'s'))}
self.customized_keys = set(['codeDir', 'classFileName', 'className'])
def validate_class_args(self, class_args, algo_type, builtin_name):
if not builtin_name or not class_args:
return
meta = get_registered_algo_meta(builtin_name, algo_type+'s')
if meta and 'acceptClassArgs' in meta and meta['acceptClassArgs'] == False:
raise SchemaError('classArgs is not allowed.')
logging.getLogger('nni.protocol').setLevel(logging.ERROR) # we know IPC is not there, don't complain
validator = create_validator_instance(algo_type+'s', builtin_name)
if validator:
try:
validator.validate_class_args(**class_args)
except Exception as e:
raise SchemaError(str(e))
def missing_customized_keys(self, data):
return self.customized_keys - set(data.keys())
def validate_extras(self, data, algo_type):
builtin_key = self.builtin_keys[algo_type]
if (builtin_key in data) and (set(data.keys()) & self.customized_keys):
raise SchemaError('{} and {} cannot be specified at the same time.'.format(
builtin_key, set(data.keys()) & self.customized_keys
))
if self.missing_customized_keys(data) and builtin_key not in data:
raise SchemaError('Either customized {} ({}) or builtin {} ({}) must be set.'.format(
algo_type, self.customized_keys, algo_type, builtin_key))
if not self.missing_customized_keys(data):
class_file_name = os.path.join(data['codeDir'], data['classFileName'])
if not os.path.isfile(class_file_name):
raise SchemaError('classFileName {} not found.'.format(class_file_name))
builtin_name = data.get(builtin_key)
class_args = data.get('classArgs')
self.validate_class_args(class_args, algo_type, builtin_name)
def validate(self, data):
self.algo_schema.update(self.builtin_name_schema[self.algo_type])
Schema(self.algo_schema).validate(data)
self.validate_extras(data, self.algo_type)
common_schema = {
'authorName': setType('authorName', str),
'experimentName': setType('experimentName', str),
Optional('description'): setType('description', str),
'trialConcurrency': setNumberRange('trialConcurrency', int, 1, 99999),
Optional('maxExecDuration'): And(Regex(r'^[1-9][0-9]*[s|m|h|d]$', error='ERROR: maxExecDuration format is [digit]{s,m,h,d}')),
Optional('maxTrialNum'): setNumberRange('maxTrialNum', int, 1, 99999),
'trainingServicePlatform': setChoice(
'trainingServicePlatform', 'remote', 'local', 'pai', 'kubeflow', 'frameworkcontroller', 'dlts', 'aml', 'adl', 'hybrid'),
Optional('searchSpacePath'): And(os.path.exists, error=SCHEMA_PATH_ERROR % 'searchSpacePath'),
Optional('multiPhase'): setType('multiPhase', bool),
Optional('multiThread'): setType('multiThread', bool),
Optional('nniManagerIp'): setType('nniManagerIp', str),
Optional('logDir'): And(os.path.isdir, error=SCHEMA_PATH_ERROR % 'logDir'),
Optional('debug'): setType('debug', bool),
Optional('versionCheck'): setType('versionCheck', bool),
Optional('logLevel'): setChoice('logLevel', 'trace', 'debug', 'info', 'warning', 'error', 'fatal'),
Optional('logCollection'): setChoice('logCollection', 'http', 'none'),
'useAnnotation': setType('useAnnotation', bool),
Optional('tuner'): AlgoSchema('tuner'),
Optional('advisor'): AlgoSchema('advisor'),
Optional('assessor'): AlgoSchema('assessor'),
Optional('localConfig'): {
Optional('gpuIndices'): Or(int, And(str, lambda x: len([int(i) for i in x.split(',')]) > 0), error='gpuIndex format error!'),
Optional('maxTrialNumPerGpu'): setType('maxTrialNumPerGpu', int),
Optional('useActiveGpu'): setType('useActiveGpu', bool)
},
Optional('sharedStorage'): {
'storageType': setChoice('storageType', 'NFS', 'AzureBlob'),
Optional('localMountPoint'): setType('localMountPoint', str),
Optional('remoteMountPoint'): setType('remoteMountPoint', str),
Optional('nfsServer'): setType('nfsServer', str),
Optional('exportedDirectory'): setType('exportedDirectory', str),
Optional('storageAccountName'): setType('storageAccountName', str),
Optional('storageAccountKey'): setType('storageAccountKey', str),
Optional('containerName'): setType('containerName', str),
Optional('resourceGroupName'): setType('resourceGroupName', str),
Optional('localMounted'): setChoice('localMounted', 'usermount', 'nnimount', 'nomount')
}
}
common_trial_schema = {
'trial': {
'command': setType('command', str),
'codeDir': setPathCheck('codeDir'),
Optional('gpuNum'): setNumberRange('gpuNum', int, 0, 99999),
Optional('nasMode'): setChoice('nasMode', 'classic_mode', 'enas_mode', 'oneshot_mode', 'darts_mode')
}
}
pai_yarn_trial_schema = {
'trial': {
'command': setType('command', str),
'codeDir': setPathCheck('codeDir'),
'gpuNum': setNumberRange('gpuNum', int, 0, 99999),
'cpuNum': setNumberRange('cpuNum', int, 0, 99999),
'memoryMB': setType('memoryMB', int),
'image': setType('image', str),
Optional('authFile'): And(os.path.exists, error=SCHEMA_PATH_ERROR % 'authFile'),
Optional('shmMB'): setType('shmMB', int),
Optional('dataDir'): And(Regex(r'hdfs://(([0-9]{1,3}.){3}[0-9]{1,3})(:[0-9]{2,5})?(/.*)?'),
error='ERROR: dataDir format error, dataDir format is hdfs://xxx.xxx.xxx.xxx:xxx'),
Optional('outputDir'): And(Regex(r'hdfs://(([0-9]{1,3}.){3}[0-9]{1,3})(:[0-9]{2,5})?(/.*)?'),
error='ERROR: outputDir format error, outputDir format is hdfs://xxx.xxx.xxx.xxx:xxx'),
Optional('virtualCluster'): setType('virtualCluster', str),
Optional('nasMode'): setChoice('nasMode', 'classic_mode', 'enas_mode', 'oneshot_mode', 'darts_mode'),
Optional('portList'): [{
'label': setType('label', str),
'beginAt': setType('beginAt', int),
'portNumber': setType('portNumber', int)
}]
}
}
pai_trial_schema = {
'trial': {
'codeDir': setPathCheck('codeDir'),
'nniManagerNFSMountPath': setPathCheck('nniManagerNFSMountPath'),
'containerNFSMountPath': setType('containerNFSMountPath', str),
Optional('command'): setType('command', str),
Optional('gpuNum'): setNumberRange('gpuNum', int, 0, 99999),
Optional('cpuNum'): setNumberRange('cpuNum', int, 0, 99999),
Optional('memoryMB'): setType('memoryMB', int),
Optional('image'): setType('image', str),
Optional('virtualCluster'): setType('virtualCluster', str),
Optional('paiStorageConfigName'): setType('paiStorageConfigName', str),
Optional('paiConfigPath'): And(os.path.exists, error=SCHEMA_PATH_ERROR % 'paiConfigPath')
}
}
pai_config_schema = {
Optional('paiConfig'): {
'userName': setType('userName', str),
Or('passWord', 'token', only_one=True): str,
'host': setType('host', str),
Optional('reuse'): setType('reuse', bool),
Optional('gpuNum'): setNumberRange('gpuNum', int, 0, 99999),
Optional('cpuNum'): setNumberRange('cpuNum', int, 0, 99999),
Optional('memoryMB'): setType('memoryMB', int),
Optional('maxTrialNumPerGpu'): setType('maxTrialNumPerGpu', int),
Optional('useActiveGpu'): setType('useActiveGpu', bool),
}
}
dlts_trial_schema = {
'trial': {
'command': setType('command', str),
'codeDir': setPathCheck('codeDir'),
'gpuNum': setNumberRange('gpuNum', int, 0, 99999),
'image': setType('image', str),
}
}
dlts_config_schema = {
'dltsConfig': {
'dashboard': setType('dashboard', str),
Optional('cluster'): setType('cluster', str),
Optional('team'): setType('team', str),
Optional('email'): setType('email', str),
Optional('password'): setType('password', str),
}
}
aml_trial_schema = {
'trial': {
'codeDir': setPathCheck('codeDir'),
'command': setType('command', str),
'image': setType('image', str),
Optional('gpuNum'): setNumberRange('gpuNum', int, 0, 99999),
}
}
aml_config_schema = {
Optional('amlConfig'): {
'subscriptionId': setType('subscriptionId', str),
'resourceGroup': setType('resourceGroup', str),
'workspaceName': setType('workspaceName', str),
'computeTarget': setType('computeTarget', str),
Optional('maxTrialNumPerGpu'): setType('maxTrialNumPerGpu', int),
Optional('useActiveGpu'): setType('useActiveGpu', bool),
}
}
hybrid_trial_schema = {
'trial': {
'codeDir': setPathCheck('codeDir'),
Optional('nniManagerNFSMountPath'): setPathCheck('nniManagerNFSMountPath'),
Optional('containerNFSMountPath'): setType('containerNFSMountPath', str),
Optional('nasMode'): setChoice('nasMode', 'classic_mode', 'enas_mode', 'oneshot_mode', 'darts_mode'),
'command': setType('command', str),
Optional('gpuNum'): setNumberRange('gpuNum', int, 0, 99999),
Optional('cpuNum'): setNumberRange('cpuNum', int, 0, 99999),
Optional('memoryMB'): setType('memoryMB', int),
Optional('image'): setType('image', str),
Optional('virtualCluster'): setType('virtualCluster', str),
Optional('paiStorageConfigName'): setType('paiStorageConfigName', str),
Optional('paiConfigPath'): And(os.path.exists, error=SCHEMA_PATH_ERROR % 'paiConfigPath')
}
}
hybrid_config_schema = {
'hybridConfig': {
'trainingServicePlatforms': ['local', 'remote', 'pai', 'aml']
}
}
adl_trial_schema = {
'trial':{
'codeDir': setType('codeDir', str),
'command': setType('command', str),
'gpuNum': setNumberRange('gpuNum', int, 0, 99999),
'image': setType('image', str),
Optional('namespace'): setType('namespace', str),
Optional('imagePullSecrets'): [{
'name': setType('name', str)
}],
Optional('nfs'): {
'server': setType('server', str),
'path': setType('path', str),
'containerMountPath': setType('containerMountPath', str)
},
Optional('adaptive'): setType('adaptive', bool),
Optional('checkpoint'): {
'storageClass': setType('storageClass', str),
'storageSize': setType('storageSize', str)
},
Optional('cpuNum'): setNumberRange('cpuNum', int, 0, 99999),
Optional('memorySize'): setType('memorySize', str)
}
}
kubeflow_trial_schema = {
'trial': {
'codeDir': setPathCheck('codeDir'),
Optional('nasMode'): setChoice('nasMode', 'classic_mode', 'enas_mode', 'oneshot_mode', 'darts_mode'),
Optional('ps'): {
'replicas': setType('replicas', int),
'command': setType('command', str),
'gpuNum': setNumberRange('gpuNum', int, 0, 99999),
'cpuNum': setNumberRange('cpuNum', int, 0, 99999),
'memoryMB': setType('memoryMB', int),
'image': setType('image', str),
Optional('privateRegistryAuthPath'): And(os.path.exists, error=SCHEMA_PATH_ERROR % 'privateRegistryAuthPath')
},
Optional('master'): {
'replicas': setType('replicas', int),
'command': setType('command', str),
'gpuNum': setNumberRange('gpuNum', int, 0, 99999),
'cpuNum': setNumberRange('cpuNum', int, 0, 99999),
'memoryMB': setType('memoryMB', int),
'image': setType('image', str),
Optional('privateRegistryAuthPath'): And(os.path.exists, error=SCHEMA_PATH_ERROR % 'privateRegistryAuthPath')
},
Optional('worker'): {
'replicas': setType('replicas', int),
'command': setType('command', str),
'gpuNum': setNumberRange('gpuNum', int, 0, 99999),
'cpuNum': setNumberRange('cpuNum', int, 0, 99999),
'memoryMB': setType('memoryMB', int),
'image': setType('image', str),
Optional('privateRegistryAuthPath'): And(os.path.exists, error=SCHEMA_PATH_ERROR % 'privateRegistryAuthPath')
}
}
}
kubeflow_config_schema = {
'kubeflowConfig': Or({
'operator': setChoice('operator', 'tf-operator', 'pytorch-operator'),
'apiVersion': setType('apiVersion', str),
Optional('storage'): setChoice('storage', 'nfs', 'azureStorage'),
'nfs': {
'server': setType('server', str),
'path': setType('path', str)
}
}, {
'operator': setChoice('operator', 'tf-operator', 'pytorch-operator'),
'apiVersion': setType('apiVersion', str),
Optional('storage'): setChoice('storage', 'nfs', 'azureStorage'),
'keyVault': {
'vaultName': And(Regex('([0-9]|[a-z]|[A-Z]|-){1,127}'),
error='ERROR: vaultName format error, vaultName support using (0-9|a-z|A-Z|-)'),
'name': And(Regex('([0-9]|[a-z]|[A-Z]|-){1,127}'),
error='ERROR: name format error, name support using (0-9|a-z|A-Z|-)')
},
'azureStorage': {
'accountName': And(Regex('([0-9]|[a-z]|[A-Z]|-){3,31}'),
error='ERROR: accountName format error, accountName support using (0-9|a-z|A-Z|-)'),
'azureShare': And(Regex('([0-9]|[a-z]|[A-Z]|-){3,63}'),
error='ERROR: azureShare format error, azureShare support using (0-9|a-z|A-Z|-)')
},
Optional('uploadRetryCount'): setNumberRange('uploadRetryCount', int, 1, 99999)
})
}
frameworkcontroller_trial_schema = {
'trial': {
'codeDir': setPathCheck('codeDir'),
Optional('taskRoles'): [{
'name': setType('name', str),
'taskNum': setType('taskNum', int),
'frameworkAttemptCompletionPolicy': {
'minFailedTaskCount': setType('minFailedTaskCount', int),
'minSucceededTaskCount': setType('minSucceededTaskCount', int),
},
'command': setType('command', str),
'gpuNum': setNumberRange('gpuNum', int, 0, 99999),
'cpuNum': setNumberRange('cpuNum', int, 0, 99999),
'memoryMB': setType('memoryMB', int),
'image': setType('image', str),
Optional('privateRegistryAuthPath'): And(os.path.exists, error=SCHEMA_PATH_ERROR % 'privateRegistryAuthPath')
}]
}
}
frameworkcontroller_config_schema = {
'frameworkcontrollerConfig': Or({
Optional('storage'): setChoice('storage', 'nfs', 'azureStorage', 'pvc'),
Optional('serviceAccountName'): setType('serviceAccountName', str),
'nfs': {
'server': setType('server', str),
'path': setType('path', str)
},
Optional('namespace'): setType('namespace', str),
Optional('configPath'): setType('configPath', str),
}, {
Optional('storage'): setChoice('storage', 'nfs', 'azureStorage', 'pvc'),
Optional('serviceAccountName'): setType('serviceAccountName', str),
'configPath': setType('configPath', str),
'pvc': {'path': setType('server', str)},
Optional('namespace'): setType('namespace', str),
}, {
Optional('storage'): setChoice('storage', 'nfs', 'azureStorage', 'pvc'),
Optional('serviceAccountName'): setType('serviceAccountName', str),
'keyVault': {
'vaultName': And(Regex('([0-9]|[a-z]|[A-Z]|-){1,127}'),
error='ERROR: vaultName format error, vaultName support using (0-9|a-z|A-Z|-)'),
'name': And(Regex('([0-9]|[a-z]|[A-Z]|-){1,127}'),
error='ERROR: name format error, name support using (0-9|a-z|A-Z|-)')
},
'azureStorage': {
'accountName': And(Regex('([0-9]|[a-z]|[A-Z]|-){3,31}'),
error='ERROR: accountName format error, accountName support using (0-9|a-z|A-Z|-)'),
'azureShare': And(Regex('([0-9]|[a-z]|[A-Z]|-){3,63}'),
error='ERROR: azureShare format error, azureShare support using (0-9|a-z|A-Z|-)')
},
Optional('uploadRetryCount'): setNumberRange('uploadRetryCount', int, 1, 99999),
Optional('namespace'): setType('namespace', str),
Optional('configPath'): setType('configPath', str),
})
}
remote_config_schema = {
Optional('remoteConfig'): {
'reuse': setType('reuse', bool)
}
}
machine_list_schema = {
Optional('machineList'): [Or(
{
'ip': setType('ip', str),
Optional('port'): setNumberRange('port', int, 1, 65535),
'username': setType('username', str),
'sshKeyPath': setPathCheck('sshKeyPath'),
Optional('passphrase'): setType('passphrase', str),
Optional('gpuIndices'): Or(int, And(str, lambda x: len([int(i) for i in x.split(',')]) > 0), error='gpuIndex format error!'),
Optional('maxTrialNumPerGpu'): setType('maxTrialNumPerGpu', int),
Optional('useActiveGpu'): setType('useActiveGpu', bool),
Optional('pythonPath'): setType('pythonPath', str)
},
{
'ip': setType('ip', str),
Optional('port'): setNumberRange('port', int, 1, 65535),
'username': setType('username', str),
'passwd': setType('passwd', str),
Optional('gpuIndices'): Or(int, And(str, lambda x: len([int(i) for i in x.split(',')]) > 0), error='gpuIndex format error!'),
Optional('maxTrialNumPerGpu'): setType('maxTrialNumPerGpu', int),
Optional('useActiveGpu'): setType('useActiveGpu', bool),
Optional('pythonPath'): setType('pythonPath', str)
})]
}
training_service_schema_dict = {
'adl': Schema({**common_schema, **adl_trial_schema}),
'local': Schema({**common_schema, **common_trial_schema}),
'remote': Schema({**common_schema, **common_trial_schema, **machine_list_schema, **remote_config_schema}),
'pai': Schema({**common_schema, **pai_trial_schema, **pai_config_schema}),
'kubeflow': Schema({**common_schema, **kubeflow_trial_schema, **kubeflow_config_schema}),
'frameworkcontroller': Schema({**common_schema, **frameworkcontroller_trial_schema, **frameworkcontroller_config_schema}),
'aml': Schema({**common_schema, **aml_trial_schema, **aml_config_schema}),
'dlts': Schema({**common_schema, **dlts_trial_schema, **dlts_config_schema}),
'hybrid': Schema({**common_schema, **hybrid_trial_schema, **hybrid_config_schema, **machine_list_schema,
**pai_config_schema, **aml_config_schema, **remote_config_schema}),
}
class NNIConfigSchema:
def validate(self, data):
train_service = data['trainingServicePlatform']
Schema(common_schema['trainingServicePlatform']).validate(train_service)
train_service_schema = training_service_schema_dict[train_service]
train_service_schema.validate(data)
self.validate_extras(data)
def validate_extras(self, experiment_config):
self.validate_tuner_adivosr_assessor(experiment_config)
self.validate_pai_trial_conifg(experiment_config)
self.validate_kubeflow_operators(experiment_config)
self.validate_eth0_device(experiment_config)
self.validate_hybrid_platforms(experiment_config)
self.validate_frameworkcontroller_trial_config(experiment_config)
def validate_tuner_adivosr_assessor(self, experiment_config):
if experiment_config.get('advisor'):
if experiment_config.get('assessor') or experiment_config.get('tuner'):
raise SchemaError('advisor could not be set with assessor or tuner simultaneously!')
self.validate_annotation_content(experiment_config, 'advisor', 'builtinAdvisorName')
else:
if not experiment_config.get('tuner'):
raise SchemaError('Please provide tuner spec!')
self.validate_annotation_content(experiment_config, 'tuner', 'builtinTunerName')
def validate_search_space_content(self, experiment_config):
'''Validate searchspace content,
if the searchspace file is not json format or its values does not contain _type and _value which must be specified,
it will not be a valid searchspace file'''
try:
search_space_content = json.load(open(experiment_config.get('searchSpacePath'), 'r'))
for value in search_space_content.values():
if not value.get('_type') or not value.get('_value'):
raise SchemaError('please use _type and _value to specify searchspace!')
except Exception as e:
raise SchemaError('searchspace file is not a valid json format! ' + str(e))
def validate_kubeflow_operators(self, experiment_config):
'''Validate whether the kubeflow operators are valid'''
if experiment_config.get('kubeflowConfig'):
if experiment_config.get('kubeflowConfig').get('operator') == 'tf-operator':
if experiment_config.get('trial').get('master') is not None:
raise SchemaError('kubeflow with tf-operator can not set master')
if experiment_config.get('trial').get('worker') is None:
raise SchemaError('kubeflow with tf-operator must set worker')
elif experiment_config.get('kubeflowConfig').get('operator') == 'pytorch-operator':
if experiment_config.get('trial').get('ps') is not None:
raise SchemaError('kubeflow with pytorch-operator can not set ps')
if experiment_config.get('trial').get('master') is None:
raise SchemaError('kubeflow with pytorch-operator must set master')
if experiment_config.get('kubeflowConfig').get('storage') == 'nfs':
if experiment_config.get('kubeflowConfig').get('nfs') is None:
raise SchemaError('please set nfs configuration!')
elif experiment_config.get('kubeflowConfig').get('storage') == 'azureStorage':
if experiment_config.get('kubeflowConfig').get('azureStorage') is None:
raise SchemaError('please set azureStorage configuration!')
elif experiment_config.get('kubeflowConfig').get('storage') is None:
if experiment_config.get('kubeflowConfig').get('azureStorage'):
raise SchemaError('please set storage type!')
def validate_annotation_content(self, experiment_config, spec_key, builtin_name):
'''
Valid whether useAnnotation and searchSpacePath is coexist
spec_key: 'advisor' or 'tuner'
builtin_name: 'builtinAdvisorName' or 'builtinTunerName'
'''
if experiment_config.get('useAnnotation'):
if experiment_config.get('searchSpacePath'):
raise SchemaError('If you set useAnnotation=true, please leave searchSpacePath empty')
else:
# validate searchSpaceFile
if experiment_config[spec_key].get(builtin_name) == 'NetworkMorphism':
return
if experiment_config[spec_key].get(builtin_name):
if experiment_config.get('searchSpacePath') is None:
raise SchemaError('Please set searchSpacePath!')
self.validate_search_space_content(experiment_config)
def validate_pai_config_path(self, experiment_config):
'''validate paiConfigPath field'''
if experiment_config.get('trainingServicePlatform') == 'pai':
if experiment_config.get('trial', {}).get('paiConfigPath'):
# validate commands
pai_config = get_yml_content(experiment_config['trial']['paiConfigPath'])
taskRoles_dict = pai_config.get('taskRoles')
if not taskRoles_dict:
raise SchemaError('Please set taskRoles in paiConfigPath config file!')
else:
pai_trial_fields_required_list = ['image', 'paiStorageConfigName', 'command']
for trial_field in pai_trial_fields_required_list:
if experiment_config['trial'].get(trial_field) is None:
raise SchemaError('Please set {0} in trial configuration,\
or set additional pai configuration file path in paiConfigPath!'.format(trial_field))
pai_resource_fields_required_list = ['gpuNum', 'cpuNum', 'memoryMB']
for required_field in pai_resource_fields_required_list:
if experiment_config['trial'].get(required_field) is None and \
experiment_config['paiConfig'].get(required_field) is None:
raise SchemaError('Please set {0} in trial or paiConfig configuration,\
or set additional pai configuration file path in paiConfigPath!'.format(required_field))
def validate_pai_trial_conifg(self, experiment_config):
'''validate the trial config in pai platform'''
if experiment_config.get('trainingServicePlatform') in ['pai']:
if experiment_config.get('trial').get('shmMB') and \
experiment_config['trial']['shmMB'] > experiment_config['trial']['memoryMB']:
raise SchemaError('shmMB should be no more than memoryMB!')
# backward compatibility
warning_information = '{0} is not supported in NNI anymore, please remove the field in config file!\
please refer https://github.com/microsoft/nni/blob/master/docs/en_US/TrainingService/PaiMode.md#run-an-experiment\
for the practices of how to get data and output model in trial code'
if experiment_config.get('trial').get('dataDir'):
print_warning(warning_information.format('dataDir'))
if experiment_config.get('trial').get('outputDir'):
print_warning(warning_information.format('outputDir'))
self.validate_pai_config_path(experiment_config)
def validate_eth0_device(self, experiment_config):
'''validate whether the machine has eth0 device'''
if experiment_config.get('trainingServicePlatform') not in ['local'] \
and not experiment_config.get('nniManagerIp') \
and 'eth0' not in netifaces.interfaces():
raise SchemaError('This machine does not contain eth0 network device, please set nniManagerIp in config file!')
def validate_hybrid_platforms(self, experiment_config):
required_config_name_map = {
'remote': 'machineList',
'aml': 'amlConfig',
'pai': 'paiConfig'
}
if experiment_config.get('trainingServicePlatform') == 'hybrid':
for platform in experiment_config['hybridConfig']['trainingServicePlatforms']:
config_name = required_config_name_map.get(platform)
if config_name and not experiment_config.get(config_name):
raise SchemaError('Need to set {0} for {1} in hybrid mode!'.format(config_name, platform))
def validate_frameworkcontroller_trial_config(self, experiment_config):
if experiment_config.get('trainingServicePlatform') == 'frameworkcontroller':
if not experiment_config.get('trial').get('taskRoles'):
if not experiment_config.get('frameworkcontrollerConfig').get('configPath'):
raise SchemaError("""If no taskRoles are specified a valid custom frameworkcontroller config should
be set using the configPath attribute in frameworkcontrollerConfig!""")
config_content = get_yml_content(experiment_config.get('frameworkcontrollerConfig').get('configPath'))
if not config_content.get('spec').get('taskRoles') or not config_content.get('spec').get('taskRoles'):
raise SchemaError('Invalid frameworkcontroller config! No taskRoles were specified!')
if not config_content.get('spec').get('taskRoles')[0].get('task'):
raise SchemaError('Invalid frameworkcontroller config! No task was specified for taskRole!')
names = []
for taskRole in config_content.get('spec').get('taskRoles'):
if not "name" in taskRole:
raise SchemaError('Invalid frameworkcontroller config! Name is missing for taskRole!')
names.append(taskRole.get("name"))
if len(names) > len(set(names)):
raise SchemaError('Invalid frameworkcontroller config! Duplicate taskrole names!')
if not config_content.get('metadata').get('name'):
raise SchemaError('Invalid frameworkcontroller config! No experiment name was specified!')
|