File size: 9,156 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

"""
Tuner is an AutoML algorithm, which generates a new configuration for the next try.
A new trial will run with this configuration.

See :class:`Tuner`' specification and ``docs/en_US/tuners.rst`` for details.
"""

import logging

import nni

from .recoverable import Recoverable

__all__ = ['Tuner']

_logger = logging.getLogger(__name__)


class Tuner(Recoverable):
    """
    Tuner is an AutoML algorithm, which generates a new configuration for the next try.
    A new trial will run with this configuration.

    This is the abstract base class for all tuners.
    Tuning algorithms should inherit this class and override :meth:`update_search_space`, :meth:`receive_trial_result`,
    as well as :meth:`generate_parameters` or :meth:`generate_multiple_parameters`.

    After initializing, NNI will first call :meth:`update_search_space` to tell tuner the feasible region,
    and then call :meth:`generate_parameters` one or more times to request for hyper-parameter configurations.

    The framework will train several models with given configuration.
    When one of them is finished, the final accuracy will be reported to :meth:`receive_trial_result`.
    And then another configuration will be reqeusted and trained, util the whole experiment finish.

    If a tuner want's to know when a trial ends, it can also override :meth:`trial_end`.

    Tuners use *parameter ID* to track trials.
    In tuner context, there is a one-to-one mapping between parameter ID and trial.
    When the framework ask tuner to generate hyper-parameters for a new trial,
    an ID has already been assigned and can be recorded in :meth:`generate_parameters`.
    Later when the trial ends, the ID will be reported to :meth:`trial_end`,
    and :meth:`receive_trial_result` if it has a final result.
    Parameter IDs are unique integers.

    The type/format of search space and hyper-parameters are not limited,
    as long as they are JSON-serializable and in sync with trial code.
    For HPO tuners, however, there is a widely shared common interface,
    which supports ``choice``, ``randint``, ``uniform``, and so on.
    See ``docs/en_US/Tutorial/SearchSpaceSpec.md`` for details of this interface.

    [WIP] For advanced tuners which take advantage of trials' intermediate results,
    an ``Advisor`` interface is under development.

    See Also
    --------
    Builtin tuners:
    :class:`~nni.algorithms.hpo.hyperopt_tuner.hyperopt_tuner.HyperoptTuner`
    :class:`~nni.algorithms.hpo.evolution_tuner.evolution_tuner.EvolutionTuner`
    :class:`~nni.algorithms.hpo.smac_tuner.SMACTuner`
    :class:`~nni.algorithms.hpo.gridsearch_tuner.GridSearchTuner`
    :class:`~nni.algorithms.hpo.networkmorphism_tuner.networkmorphism_tuner.NetworkMorphismTuner`
    :class:`~nni.algorithms.hpo.metis_tuner.mets_tuner.MetisTuner`
    :class:`~nni.algorithms.hpo.ppo_tuner.PPOTuner`
    :class:`~nni.algorithms.hpo.gp_tuner.gp_tuner.GPTuner`
    """

    def generate_parameters(self, parameter_id, **kwargs):
        """
        Abstract method which provides a set of hyper-parameters.

        This method will get called when the framework is about to launch a new trial,
        if user does not override :meth:`generate_multiple_parameters`.

        The return value of this method will be received by trials via :func:`nni.get_next_parameter`.
        It should fit in the search space, though the framework will not verify this.

        User code must override either this method or :meth:`generate_multiple_parameters`.

        Parameters
        ----------
        parameter_id : int
            Unique identifier for requested hyper-parameters. This will later be used in :meth:`receive_trial_result`.
        **kwargs
            Unstable parameters which should be ignored by normal users.

        Returns
        -------
        any
            The hyper-parameters, a dict in most cases, but could be any JSON-serializable type when needed.

        Raises
        ------
        nni.NoMoreTrialError
            If the search space is fully explored, tuner can raise this exception.
        """
        # FIXME: some tuners raise NoMoreTrialError when they are waiting for more trial results
        # we need to design a new exception for this purpose
        raise NotImplementedError('Tuner: generate_parameters not implemented')

    def generate_multiple_parameters(self, parameter_id_list, **kwargs):
        """
        Callback method which provides multiple sets of hyper-parameters.

        This method will get called when the framework is about to launch one or more new trials.

        If user does not override this method, it will invoke :meth:`generate_parameters` on each parameter ID.

        See :meth:`generate_parameters` for details.

        User code must override either this method or :meth:`generate_parameters`.

        Parameters
        ----------
        parameter_id_list : list of int
            Unique identifiers for each set of requested hyper-parameters.
            These will later be used in :meth:`receive_trial_result`.
        **kwargs
            Unstable parameters which should be ignored by normal users.

        Returns
        -------
        list
            List of hyper-parameters. An empty list indicates there are no more trials.
        """
        result = []
        for parameter_id in parameter_id_list:
            try:
                _logger.debug("generating param for %s", parameter_id)
                res = self.generate_parameters(parameter_id, **kwargs)
            except nni.NoMoreTrialError:
                return result
            result.append(res)
        return result

    def receive_trial_result(self, parameter_id, parameters, value, **kwargs):
        """
        Abstract method invoked when a trial reports its final result. Must override.

        This method only listens to results of algorithm-generated hyper-parameters.
        Currently customized trials added from web UI will not report result to this method.

        Parameters
        ----------
        parameter_id : int
            Unique identifier of used hyper-parameters, same with :meth:`generate_parameters`.
        parameters
            Hyper-parameters generated by :meth:`generate_parameters`.
        value
            Result from trial (the return value of :func:`nni.report_final_result`).
        **kwargs
            Unstable parameters which should be ignored by normal users.
        """
        raise NotImplementedError('Tuner: receive_trial_result not implemented')

    def _accept_customized_trials(self, accept=True):
        # FIXME: because Tuner is designed as interface, this API should not be here

        # Enable or disable receiving results of user-added hyper-parameters.
        # By default `receive_trial_result()` will only receive results of algorithm-generated hyper-parameters.
        # If tuners want to receive those of customized parameters as well, they can call this function in `__init__()`.

        # pylint: disable=attribute-defined-outside-init
        self._accept_customized = accept

    def trial_end(self, parameter_id, success, **kwargs):
        """
        Abstract method invoked when a trial is completed or terminated. Do nothing by default.

        Parameters
        ----------
        parameter_id : int
            Unique identifier for hyper-parameters used by this trial.
        success : bool
            True if the trial successfully completed; False if failed or terminated.
        **kwargs
            Unstable parameters which should be ignored by normal users.
        """

    def update_search_space(self, search_space):
        """
        Abstract method for updating the search space. Must override.

        Tuners are advised to support updating search space at run-time.
        If a tuner can only set search space once before generating first hyper-parameters,
        it should explicitly document this behaviour.

        Parameters
        ----------
        search_space
            JSON object defined by experiment owner.
        """
        raise NotImplementedError('Tuner: update_search_space not implemented')

    def load_checkpoint(self):
        """
        Internal API under revising, not recommended for end users.
        """
        checkpoin_path = self.get_checkpoint_path()
        _logger.info('Load checkpoint ignored by tuner, checkpoint path: %s', checkpoin_path)

    def save_checkpoint(self):
        """
        Internal API under revising, not recommended for end users.
        """
        checkpoin_path = self.get_checkpoint_path()
        _logger.info('Save checkpoint ignored by tuner, checkpoint path: %s', checkpoin_path)

    def import_data(self, data):
        """
        Internal API under revising, not recommended for end users.
        """
        # Import additional data for tuning
        # data: a list of dictionarys, each of which has at least two keys, 'parameter' and 'value'
        pass

    def _on_exit(self):
        pass

    def _on_error(self):
        pass