# from transformers import CvtModel,CvtConfig,CvtForImageClassification,AutoFeatureExtractor | |
# import torch | |
# from PIL import Image | |
# import requests | |
# from dnns.vit import vit_b_16 | |
# torch.cuda.set_device(1) | |
# device = 'cuda' | |
# #configuration = CvtConfig(num_labels=5) | |
# # url = 'http://images.cocodataset.org/val2017/000000039769.jpg' | |
# # image = Image.open(requests.get(url, stream=True).raw) | |
# # feature_extractor = AutoFeatureExtractor.from_pretrained('microsoft/cvt-13') | |
# model = CvtForImageClassification.from_pretrained("/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/cv/cvt_model")#这里是规定最终我输出的分类个数,需要注意的是如果linear最终的输出不匹配的话,需要把第三个参数设置为True | |
# sample = torch.rand((4, 3, 224, 224)).to(device) | |
# model3 = vit_b_16(pretrained = True,num_classes=20) | |
# model2 = torch.load("/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/cv/entry_model/cvt_pretrained.pt",map_location=device) | |
# model2['main'].train() | |
# for n, m in model2['main'].named_modules(): | |
# print(n) | |
# if n=='cvt.encoder.stages.2.layers.2.attention.attention.convolution_projection_value.linear_projection': | |
# print(m) | |
# elif n== 'cvt.encoder.stages.2.layers.0.intermediate.dense': | |
# print(m) | |
# outputs = model2['main'](sample) | |
# # print(**inputs) | |
import numpy | |
a = [1,2,3,4,5] | |
print(a[1:]) | |