EdgeTA / methods /elasticdnn /api /algs /md_pretraining_bk.py
LINC-BIT's picture
Upload 1912 files
b84549f verified
raw
history blame
13 kB
from typing import Any, Dict
from schema import Schema, Or
import schema
from data import Scenario, MergedDataset
from methods.base.alg import BaseAlg
from data import build_dataloader
from ..model import ElasticDNN_OfflineFMModel, ElasticDNN_OfflineMDModel
from ...model.base import ElasticDNNUtil
import torch.optim
import tqdm
import torch.nn.functional as F
from torch import nn
from utils.dl.common.env import create_tbwriter
import os
import random
import numpy as np
from copy import deepcopy
from utils.dl.common.model import LayerActivation, get_module
from utils.common.log import logger
class ElasticDNN_MDPretrainingAlg(BaseAlg):
"""
TODO: fine-tuned FM -> init MD -> trained MD -> construct indexes (only between similar weights) and fine-tune
"""
def get_required_models_schema(self) -> Schema:
return Schema({
'fm': ElasticDNN_OfflineFMModel,
'md': ElasticDNN_OfflineMDModel
})
def get_required_hyp_schema(self) -> Schema:
return Schema({
'launch_tbboard': bool,
'samples_size': (int, int, int, int),
'generate_md_width_ratio': int,
'FBS_r': int,
'FBS_ignore_layers': [str],
'train_batch_size': int,
'val_batch_size': int,
'num_workers': int,
'optimizer': str,
'md_optimizer_args': dict,
'indexes_optimizer_args': dict,
'scheduler': str,
'scheduler_args': dict,
'num_iters': int,
'val_freq': int,
'max_sparsity': float,
'min_sparsity': float,
'distill_loss_weight': float,
'index_loss_weight': float,
'val_num_sparsities': int,
'bn_cal_num_iters': int,
'index_guided_linear_comb_split_size': Or(int, None)
})
def upsample_2d_tensor(self, p: torch.Tensor, target_len: int):
assert p.dim() == 2 # regard 2d weight as (batch_size, 1d_vector_dim)
return F.upsample(p.unsqueeze(1).unsqueeze(3),
size=(target_len, 1),
mode='bilinear').squeeze(3).squeeze(1)
def two_params_diff_fast(self, trained_p: torch.Tensor, ref_p: torch.Tensor,
index: torch.Tensor,
split_size: int):
assert trained_p.dim() == ref_p.dim()
assert index.size(0) == trained_p.size(0) and index.size(1) == ref_p.size(0)
# print(trained_p.size(), ref_p.size(), index.size())
ref_p = ref_p.detach()
if trained_p.dim() > 1:
trained_p = trained_p.flatten(1)
ref_p = ref_p.flatten(1)
# the weight size of master DNN and foundation model may be totally different
# MD -> FM: upsample first
# FM -> MD: downsample first
if trained_p.size(1) < ref_p.size(1):
trained_p = self.upsample_2d_tensor(trained_p, ref_p.size(1))
index = index.unsqueeze(-1)
# linear_combed_ref_p = (ref_p.unsqueeze(0) * index).sum(1)
# else:
# print(trained_p.size(), ref_p.size(), index.size())
if split_size is None:
# old version: huge memory consumption, not recommended (although this is fastest)
# print('old version')
linear_combed_ref_p = (ref_p.unsqueeze(0) * index).sum(1)
else:
# new version
linear_combed_ref_p = 0
cur_split_size = split_size
while index.size(1) % cur_split_size != 0:
cur_split_size -= 1
# print(cur_split_size)
for i in range(0, index.size(1), cur_split_size):
# if not isinstance(linear_combed_ref_p, int):
# print(linear_combed_ref_p.size(), ref_p.unsqueeze(0)[:, i: i + cur_split_size].size(), index[:, i: i + cur_split_size].size())
linear_combed_ref_p += ref_p.unsqueeze(0)[:, i: i + cur_split_size] * index[:, i: i + cur_split_size]
linear_combed_ref_p = linear_combed_ref_p.sum(1)
diff = (linear_combed_ref_p - trained_p).norm(2) ** 2
return diff
def get_index_loss(self, fm, md, indexes, match_fn, split_size):
res = 0.
for name, p in md.named_parameters():
if p.dim() == 0:
continue
raw_p = match_fn(name, fm)
if raw_p is None:
continue
index = indexes[name]
# print(name)
res += self.two_params_diff_fast(p, raw_p, index, split_size)
return res
def bn_cal(self, model: nn.Module, train_loader, num_iters, device):
has_bn = False
for n, m in model.named_modules():
if isinstance(m, nn.BatchNorm2d):
has_bn = True
break
if not has_bn:
return {}
def bn_calibration_init(m):
""" calculating post-statistics of batch normalization """
if getattr(m, 'track_running_stats', False):
# reset all values for post-statistics
m.reset_running_stats()
# set bn in training mode to update post-statistics
m.training = True
with torch.no_grad():
model.eval()
model.apply(bn_calibration_init)
for _ in range(num_iters):
x, _ = next(train_loader)
model(x.to(device))
model.eval()
bn_stats = {}
for n, m in model.named_modules():
if isinstance(m, nn.BatchNorm2d):
bn_stats[n] = m
return bn_stats
def run(self, scenario: Scenario, hyps: Dict) -> Dict[str, Any]:
super().run(scenario, hyps)
# sanity check
# a= torch.tensor([[1, 2, 3], [1, 2, 4]])
# index = torch.tensor([[1, 2, 3],
# [1, 2, 4]])
# b = torch.tensor([[1, 2, 3], [1, 2, 4], [2, 3, 4]])
# print(self.two_params_diff_fast(a, b, index, hyps['index_guided_linear_comb_split_size']))
assert isinstance(self.models['md'], ElasticDNN_OfflineMDModel) # for auto completion
assert isinstance(self.models['fm'], ElasticDNN_OfflineFMModel) # for auto completion
# 1. add FBS
device = self.models['md'].device
if self.models['md'].models_dict['main'] == -1:
logger.info(f'init master DNN by reducing width of an adapted foundation model (already tuned by LoRA)...')
before_fm_model = deepcopy(self.models['fm'].models_dict['main'])
lora_util = self.models['fm'].get_lora_util()
lora_absorbed_fm_model = lora_util.absorb_lora_and_recover_net_structure(self.models['fm'].models_dict['main'],
torch.rand(hyps['samples_size']).to(device))
self.models['fm'].models_dict['main'] = lora_absorbed_fm_model
master_dnn = self.models['fm'].generate_md_by_reducing_width(hyps['generate_md_width_ratio'],
torch.rand(hyps['samples_size']).to(device))
self.models['fm'].models_dict['main'] = before_fm_model
elastic_dnn_util = self.models['fm'].get_elastic_dnn_util()
master_dnn = elastic_dnn_util.convert_raw_dnn_to_master_dnn_with_perf_test(master_dnn,
hyps['FBS_r'], hyps['FBS_ignore_layers'])
self.models['md'].models_dict['main'] = master_dnn
self.models['md'].to(device)
# 2. train (knowledge distillation, index relationship)
offline_datasets = scenario.get_offline_datasets()
train_dataset = MergedDataset([d['train'] for d in offline_datasets.values()])
val_dataset = MergedDataset([d['val'] for d in offline_datasets.values()])
train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'],
True, None))
val_loader = build_dataloader(val_dataset, hyps['val_batch_size'], hyps['num_workers'],
False, False)
# 2.1 train whole master DNN (knowledge distillation)
for p in master_dnn.parameters():
p.requires_grad = True
self.models['md'].to_train_mode()
optimizer = torch.optim.__dict__[hyps['optimizer']]([
{'params': self.models['md'].models_dict['main'].parameters(), **hyps['md_optimizer_args']}
])
scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args'])
tb_writer = create_tbwriter(os.path.join(self.res_save_dir, 'tb_log'), launch_tbboard=hyps['launch_tbboard'])
pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True)
best_avg_val_acc = 0.
md_output_hook = None
for iter_index in pbar:
self.models['md'].to_train_mode()
self.models['fm'].to_eval_mode()
rand_sparsity = random.random() * (hyps['max_sparsity'] - hyps['min_sparsity']) + hyps['min_sparsity']
elastic_dnn_util.set_master_dnn_sparsity(self.models['md'].models_dict['main'], rand_sparsity)
x, y = next(train_loader)
x, y = x.to(device), y.to(device)
with torch.no_grad():
fm_output = self.models['fm'].infer(x)
if md_output_hook is None:
md_output_hook = LayerActivation(self.models['md'].models_dict['main'], False, device)
task_loss = self.models['md'].forward_to_get_task_loss(x, y)
md_output = md_output_hook.output
distill_loss = hyps['distill_loss_weight'] * self.models['md'].get_distill_loss(md_output, fm_output)
total_loss = task_loss + distill_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
scheduler.step()
if (iter_index + 1) % hyps['val_freq'] == 0:
elastic_dnn_util.clear_cached_channel_attention_in_master_dnn(self.models['md'].models_dict['main'])
md_output_hook.remove()
md_output_hook = None
cur_md = self.models['md'].models_dict['main']
md_for_test = deepcopy(self.models['md'].models_dict['main'])
val_accs = {}
avg_val_acc = 0.
bn_stats = {}
for val_sparsity in np.linspace(hyps['min_sparsity'], hyps['max_sparsity'], num=hyps['val_num_sparsities']):
elastic_dnn_util.set_master_dnn_sparsity(md_for_test, val_sparsity)
bn_stats[f'{val_sparsity:.4f}'] = self.bn_cal(md_for_test, train_loader, hyps['bn_cal_num_iters'], device)
self.models['md'].models_dict['main'] = md_for_test
self.models['md'].to_eval_mode()
val_acc = self.models['md'].get_accuracy(val_loader)
val_accs[f'{val_sparsity:.4f}'] = val_acc
avg_val_acc += val_acc
avg_val_acc /= hyps['val_num_sparsities']
self.models['md'].models_dict['main'] = cur_md
self.models['md'].models_dict['bn_stats'] = bn_stats
self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_last.pt'))
self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_last.pt'))
if avg_val_acc > best_avg_val_acc:
best_avg_val_acc = avg_val_acc
self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_best.pt'))
self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_best.pt'))
tb_writer.add_scalars(f'losses', dict(task=task_loss, distill=distill_loss, total=total_loss), iter_index)
pbar.set_description(f'loss: {total_loss:.6f}')
if (iter_index + 1) >= hyps['val_freq']:
tb_writer.add_scalars(f'accs/val_accs', val_accs, iter_index)
tb_writer.add_scalar(f'accs/avg_val_acc', avg_val_acc, iter_index)
pbar.set_description(f'loss: {total_loss:.6f}, avg_val_acc: {avg_val_acc:.4f}')