EdgeTA / methods /elasticdnn /api /online_model_v2.py
LINC-BIT's picture
Upload 1912 files
b84549f verified
raw
history blame
11.8 kB
from copy import deepcopy
from typing import List
import torch
from methods.base.model import BaseModel
import tqdm
from torch import nn
import torch.nn.functional as F
from abc import abstractmethod
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from utils.common.log import logger
from utils.dl.common.model import LayerActivation, get_parameter
class ElasticDNN_OnlineModel(BaseModel):
def __init__(self, name: str, models_dict_path: str, device: str, ab_options: dict):
super().__init__(name, models_dict_path, device)
assert [k in ab_options.keys() for k in ['md_to_fm_alpha', 'fm_to_md_alpha']]
self.ab_options = ab_options
def get_required_model_components(self) -> List[str]:
return ['fm', 'md', 'sd', 'indexes', 'bn_stats']
@torch.no_grad()
def generate_sd_by_target_samples(self, target_samples: torch.Tensor):
elastic_dnn_util = self.get_elastic_dnn_util()
if isinstance(target_samples, dict):
for k, v in target_samples.items():
if isinstance(v, torch.Tensor):
target_samples[k] = v.to(self.device)
else:
target_samples = target_samples.to(self.device)
sd, unpruned_indexes_of_layers = elastic_dnn_util.extract_surrogate_dnn_via_samples_with_perf_test(self.models_dict['md'], target_samples, True)
logger.debug(f'generate sd: \n{sd}')
return sd, unpruned_indexes_of_layers
@torch.no_grad()
def _compute_diff(self, old, new):
return (new - old).norm(1) / old.norm(1)
@torch.no_grad()
def sd_feedback_to_md(self, after_da_sd, unpruned_indexes_of_layers):
self.models_dict['sd'] = after_da_sd
self.before_da_md = deepcopy(self.models_dict['md'])
logger.info('\n\nsurrogate DNN feedback to master DNN...\n\n')
# one-to-one
cur_unpruned_indexes = None
cur_unpruned_indexes_name = None
for p_name, p in self.models_dict['sd'].named_parameters():
matched_md_param = self.get_md_matched_param_of_sd_param(p_name)
logger.debug(f'if feedback: {p_name}')
if matched_md_param is None:
continue
logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_md_param.size()}')
# average
# setattr(matched_md_module, matched_md_param_name, (matched_md_param + p) / 2.)
if p_name in unpruned_indexes_of_layers.keys():
cur_unpruned_indexes = unpruned_indexes_of_layers[p_name]
cur_unpruned_indexes_name = p_name
if p.size() != matched_md_param.size():
logger.debug(f'cur unpruned indexes: {cur_unpruned_indexes_name}, {cur_unpruned_indexes.size()}')
if p.dim() == 1: # norm
new_p = deepcopy(matched_md_param)
new_p[cur_unpruned_indexes] = p
elif p.dim() == 2: # linear
if p.size(0) < matched_md_param.size(0): # output pruned
new_p = deepcopy(matched_md_param)
new_p[cur_unpruned_indexes] = p
else: # input pruned
new_p = deepcopy(matched_md_param)
new_p[:, cur_unpruned_indexes] = p
p = new_p
assert p.size() == matched_md_param.size(), f'{p.size()}, {matched_md_param.size()}'
diff = self._compute_diff(matched_md_param, (matched_md_param + p) / 2.)
matched_md_param.copy_((matched_md_param + p) / 2.)
logger.debug(f'end feedback: {p_name}, diff: {diff:.6f}')
def infer(self, x, *args, **kwargs):
return self.models_dict['sd'](x)
def set_sd_sparsity(self, sparsity: float):
elastic_dnn_util = self.get_elastic_dnn_util()
elastic_dnn_util.clear_cached_channel_attention_in_master_dnn(self.models_dict['md'])
elastic_dnn_util.set_master_dnn_sparsity(self.models_dict['md'], sparsity)
@torch.no_grad()
def md_feedback_to_self_fm(self):
logger.info('\n\nmaster DNN feedback to self foundation model...\n\n')
# one-to-many
# def upsample_2d_tensor(p: torch.Tensor, target_len: int):
# assert p.dim() == 2 # regard 2d weight as (batch_size, 1d_vector_dim)
# return F.upsample(p.unsqueeze(1).unsqueeze(3),
# size=(target_len, 1),
# mode='bilinear').squeeze(3).squeeze(1)
for (p_name, p), before_p in zip(self.models_dict['md'].named_parameters(), self.before_da_md.parameters()):
matched_fm_param = self.get_fm_matched_param_of_md_param(p_name)
logger.debug(f'if feedback: {p_name}')
if matched_fm_param is None:
continue
# print(self.models_dict['indexes'].keys())
index = self.models_dict['indexes'][p_name]
logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_fm_param.size()}, index: {index.size()}')
p_update = p - before_p
t = False
if p.dim() > 1 and index.size(0) == p.size(1) and index.size(1) == matched_fm_param.size(1):
assert p.dim() == 2
p_update = p_update.T
matched_fm_param = matched_fm_param.T
t = True
logger.debug(f'transpose paramters')
if p.dim() == 2:
# p_update = upsample_2d_tensor(p_update, matched_fm_param.size(1))
p_update = p_update.unsqueeze(1)
index = index.unsqueeze(-1)
# fast
# agg_p_update = (p_update * index).sum(0)
# balanced agg
agg_p_update = 0
cur_split_size = 64
while index.size(0) % cur_split_size != 0:
cur_split_size -= 1
for i in range(0, index.size(0), cur_split_size):
agg_p_update += p_update[i: i + cur_split_size] * index[i: i + cur_split_size]
agg_p_update = agg_p_update.sum(0)
else:
agg_p_update = (p_update.unsqueeze(1) * index).sum(0)
new_fm_param = matched_fm_param + agg_p_update * self.ab_options['md_to_fm_alpha']
diff = self._compute_diff(matched_fm_param, new_fm_param)
# NOTE: matched_fm_param may not be reference, may be a deepcopy!!
# and only here matched_fm_param needs to be updated, so another method dedicated for updating is necessary here
# matched_fm_param.copy_(new_fm_param)
self.update_fm_param(p_name, new_fm_param.T if t else new_fm_param)
logger.debug(f'end feedback: {p_name}, diff: {diff:.6f} (md_to_fm_alpha={self.ab_options["md_to_fm_alpha"]:.4f})')
@abstractmethod
@torch.no_grad()
def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param):
"""
you should get the reference of fm_param and update it
"""
raise NotImplementedError
@torch.no_grad()
def aggregate_fms_to_self_fm(self, fms: List[nn.Module]):
# average task-agnositc parameters
logger.info('\n\naggregate foundation models to self foundation model...\n\n')
for p_name, self_p in self.models_dict['fm'].named_parameters():
logger.debug(f'if aggregate {p_name}')
if 'abs' in p_name or p_name.startswith('norm') or p_name.startswith('head'):
logger.debug(f'{p_name} belongs to LoRA parameters/task-specific head, i.e. task-specific parameters, skip')
continue
all_p = [get_parameter(fm, p_name) for fm in fms]
if any([_p is None for _p in all_p]):
continue
avg_p = sum(all_p) / len(all_p)
# [_p.copy_(avg_p) for _p in all_p]
diff = self._compute_diff(self_p, avg_p)
logger.debug(f'aggregate {p_name}, diff {diff:.6f}')
self_p.copy_(avg_p)
@torch.no_grad()
def fm_feedback_to_md(self):
logger.info('\n\nself foundation model feedback to master DNN...\n\n')
# one-to-many
# def downsample_2d_tensor(p: torch.Tensor, target_len: int):
# assert p.dim() == 2 # regard 2d weight as (batch_size, 1d_vector_dim)
# # return F.upsample(p.unsqueeze(1).unsqueeze(3),
# # size=(target_len, 1),
# # mode='bilinear').squeeze(3).squeeze(1)
# return F.interpolate(p.unsqueeze(1).unsqueeze(3), size=(target_len, 1), mode='bilinear').squeeze(3).squeeze(1)
for p_name, p in self.models_dict['md'].named_parameters():
matched_fm_param = self.get_fm_matched_param_of_md_param(p_name)
logger.debug(f'if feedback: {p_name}')
if matched_fm_param is None:
continue
index = self.models_dict['indexes'][p_name]
logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_fm_param.size()}, index: {index.size()}')
if p.dim() > 1 and index.size(0) == p.size(1) and index.size(1) == matched_fm_param.size(1):
assert p.dim() == 2
p = p.T
matched_fm_param = matched_fm_param.T
if p.dim() == 2:
# matched_fm_param = downsample_2d_tensor(matched_fm_param, p.size(1))
matched_fm_param = matched_fm_param.unsqueeze(0)
index = index.unsqueeze(-1)
# fast
# agg_p_update = (p_update * index).sum(0)
# balanced agg
agg_fm_param = 0
cur_split_size = 64
while index.size(1) % cur_split_size != 0:
cur_split_size -= 1
for i in range(0, index.size(1), cur_split_size):
agg_fm_param += matched_fm_param[:, i: i + cur_split_size] * index[:, i: i + cur_split_size]
agg_fm_param = agg_fm_param.sum(1)
# agg_fm_param = downsample_2d_tensor(agg_fm_param, p.size(1))
else:
agg_fm_param = (matched_fm_param.unsqueeze(0) * index).sum(1)
diff = self._compute_diff(p, agg_fm_param)
p.copy_(agg_fm_param * self.ab_options['fm_to_md_alpha'] + (1. - self.ab_options['fm_to_md_alpha']) * p)
logger.debug(f'end feedback: {p_name}, diff: {diff:.6f} (fm_to_md_alpha: {self.ab_options["fm_to_md_alpha"]:.4f})')
@abstractmethod
def get_elastic_dnn_util(self) -> ElasticDNNUtil:
pass
@abstractmethod
def get_task_head_params(self):
pass
@abstractmethod
def get_md_matched_param_of_sd_param(self, sd_param_name):
pass
@abstractmethod
def get_fm_matched_param_of_md_param(self, md_param_name):
pass
@abstractmethod
def get_md_matched_param_of_fm_param(self, fm_param_name):
pass