Spaces:
Running
Running
from typing import List | |
from data.dataloader import build_dataloader | |
# from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel | |
from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel | |
import torch | |
import sys | |
from torch import nn | |
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel | |
from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg | |
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil | |
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util | |
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util | |
from sam import ElasticsamUtil | |
from utils.common.file import ensure_dir | |
from utils.dl.common.model import LayerActivation, get_module, get_parameter | |
from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
from data import build_scenario | |
from utils.dl.common.loss import CrossEntropyLossSoft | |
import torch.nn.functional as F | |
from utils.dl.common.env import create_tbwriter | |
import os | |
from utils.common.log import logger | |
from utils.common.data_record import write_json | |
# from methods.shot.shot import OnlineShotModel | |
from new_impl.cv.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg | |
import tqdm | |
from new_impl.cv.feat_align.mmd import mmd_rbf | |
from new_impl.cv.utils.elasticfm_da import init_online_model, elasticfm_da | |
torch.cuda.set_device(1) | |
device = 'cuda' | |
app_name = 'seg' | |
sd_sparsity = 0. | |
settings = { | |
'involve_fm': True | |
} | |
scenario = build_scenario( | |
source_datasets_name=['GTA5', 'SuperviselyPerson'], | |
target_datasets_order=['Cityscapes', 'BaiduPerson'] * 10, | |
da_mode='close_set', | |
data_dirs={ | |
'GTA5': '/data/zql/datasets/GTA-ls-copy/GTA5', | |
'SuperviselyPerson': '/data/zql/datasets/supervisely_person/Supervisely Person Dataset', | |
'Cityscapes': '/data/zql/datasets/cityscape/', | |
'BaiduPerson': '/data/zql/datasets/baidu_person/clean_images/' | |
}, | |
) | |
class ElasticDNN_SegOnlineModel(ElasticDNN_OnlineModel): | |
def __init__(self, name: str, models_dict_path: str, device: str, ab_options: dict, num_classes: int): | |
super().__init__(name, models_dict_path, device, ab_options) | |
self.num_classes = num_classes | |
def get_accuracy(self, test_loader, *args, **kwargs): | |
device = self.device | |
self.to_eval_mode() | |
from methods.elasticdnn.api.model import StreamSegMetrics | |
metrics = StreamSegMetrics(self.num_classes) | |
metrics.reset() | |
import tqdm | |
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), leave=False, dynamic_ncols=True) | |
with torch.no_grad(): | |
for batch_index, (x, y) in pbar: | |
x, y = x.to(device, dtype=x.dtype, non_blocking=True, copy=False), \ | |
y.to(device, dtype=y.dtype, non_blocking=True, copy=False) | |
output = self.infer(x) | |
pred = output.detach().max(dim=1)[1].cpu().numpy() | |
metrics.update((y + 0).cpu().numpy(), pred) | |
res = metrics.get_results() | |
pbar.set_description(f'cur batch mIoU: {res["Mean Acc"]:.4f}') | |
res = metrics.get_results() | |
return res['Mean Acc'] | |
def get_elastic_dnn_util(self) -> ElasticDNNUtil: | |
return ElasticsamUtil() | |
def get_fm_matched_param_of_md_param(self, md_param_name): | |
# only between qkv.weight, norm.weight/bias | |
self_param_name = md_param_name | |
fm = self.models_dict['fm'] | |
if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]): | |
return None | |
p = get_parameter(self.models_dict['md'], self_param_name) | |
if p.dim() == 0: | |
return None | |
elif p.dim() == 1 and 'layernorm' in self_param_name and 'weight' in self_param_name: | |
if self_param_name.startswith('norm'): | |
return None | |
return get_parameter(fm, self_param_name) | |
# 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz | |
if 'qkv.weight' in self_param_name: | |
ss = self_param_name.split('.') | |
fm_qkv_name = '.'.join(ss[0: -1]) + '.fc' | |
fm_qkv = get_module(fm, fm_qkv_name) | |
fm_abs_name = '.'.join(ss[0: -1]) + '.ab' | |
fm_abs = get_module(fm, fm_abs_name) | |
# NOTE: unrecoverable operation! multiply LoRA parameters to allow it being updated in update_fm_param() | |
# TODO: if fm will be used for inference, _mul_lora_weight will not be applied! | |
if not hasattr(fm_abs, '_mul_lora_weight'): | |
logger.debug(f'set _mul_lora_weight in {fm_abs_name}') | |
setattr(fm_abs, '_mul_lora_weight', | |
nn.Parameter(fm_abs[1].weight @ fm_abs[0].weight)) | |
return torch.cat([ | |
fm_qkv.weight.data, # task-agnositc params | |
fm_abs._mul_lora_weight.data # task-specific params (LoRA) | |
], dim=0) | |
# elif 'to_qkv.bias' in self_param_name: | |
# ss = self_param_name.split('.') | |
# fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias' | |
# return get_parameter(fm, fm_qkv_name) | |
elif 'mlp.lin1' in self_param_name and 'weight' in self_param_name: | |
fm_param_name = self_param_name.replace('.linear', '') | |
return get_parameter(fm, fm_param_name) | |
elif 'mlp.lin2' in self_param_name and 'weight' in self_param_name: | |
fm_param_name = self_param_name | |
return get_parameter(fm, fm_param_name) | |
else: | |
# return get_parameter(fm, self_param_name) | |
return None | |
def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param): | |
if not 'qkv.weight' in md_param_name: | |
matched_fm_param_ref = self.get_fm_matched_param_of_md_param(md_param_name) | |
matched_fm_param_ref.copy_(cal_new_fm_param_by_md_param) | |
else: | |
new_fm_attn_weight, new_fm_lora_weight = torch.chunk(cal_new_fm_param_by_md_param, 2, 0) | |
ss = md_param_name.split('.') | |
fm = self.models_dict['fm'] | |
# update task-agnostic parameters | |
fm_qkv_name = '.'.join(ss[0: -1]) + '.fc' | |
fm_qkv = get_module(fm, fm_qkv_name) | |
fm_qkv.weight.data.copy_(new_fm_attn_weight) | |
# update task-specific parameters | |
fm_abs_name = '.'.join(ss[0: -1]) + '.ab' | |
fm_abs = get_module(fm, fm_abs_name) | |
fm_abs._mul_lora_weight.data.copy_(new_fm_lora_weight) # TODO: this will not be applied in inference! | |
def get_md_matched_param_of_fm_param(self, fm_param_name): | |
return super().get_md_matched_param_of_fm_param(fm_param_name) | |
def get_md_matched_param_of_sd_param(self, sd_param_name): | |
# only between qkv.weight, norm.weight/bias | |
self_param_name = sd_param_name | |
md = self.models_dict['md'] | |
if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]): | |
return None | |
p = get_parameter(self.models_dict['sd'], self_param_name) | |
if p.dim() == 0: | |
return None | |
elif p.dim() == 1 and 'layernorm' in self_param_name and 'weight' in self_param_name: | |
return get_parameter(md, self_param_name) | |
# 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz | |
if 'qkv.weight' in self_param_name: | |
return get_parameter(md, self_param_name) | |
# elif 'to_qkv.bias' in self_param_name: | |
# ss = self_param_name.split('.') | |
# fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias' | |
# return get_parameter(fm, fm_qkv_name) | |
elif 'mlp.lin1.0.weight' in self_param_name: | |
fm_param_name = '.'.join(self_param_name.split('.')[0: -2]) + '.linear.weight' | |
return get_parameter(md, fm_param_name) | |
elif 'mlp.lin2' in self_param_name and 'weight' in self_param_name: | |
fm_param_name = self_param_name | |
return get_parameter(md, fm_param_name) | |
else: | |
# return get_parameter(fm, self_param_name) | |
return None | |
def get_task_head_params(self): | |
head = get_module(self.models_dict['sd'], 'head') | |
return list(head.parameters()) | |
class SegOnlineFeatAlignModel(OnlineFeatAlignModel): | |
def __init__(self, name: str, models_dict_path: str, device: str, num_classes): | |
super().__init__(name, models_dict_path, device) | |
self.num_classes = num_classes | |
def get_feature_hook(self): | |
return LayerActivation(get_module(self.models_dict['main'], 'head'), False, self.device) | |
def forward_to_get_task_loss(self, x, y): | |
return F.cross_entropy(self.infer(x), y) | |
def get_mmd_loss(self, f1, f2): | |
return mmd_rbf(f1.flatten(1), f2.flatten(1)) | |
def infer(self, x, *args, **kwargs): | |
return self.models_dict['main'](x) | |
def get_trained_params(self): | |
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'qkv.weight' in n or 'norm' in n or 'mlp' in n] | |
return qkv_and_norm_params | |
def infer(self, x, *args, **kwargs): | |
return self.models_dict['main'](x) | |
def get_accuracy(self, test_loader, *args, **kwargs): | |
device = self.device | |
self.to_eval_mode() | |
from methods.elasticdnn.api.model import StreamSegMetrics | |
metrics = StreamSegMetrics(self.num_classes) | |
metrics.reset() | |
import tqdm | |
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), leave=False, dynamic_ncols=True) | |
with torch.no_grad(): | |
for batch_index, (x, y) in pbar: | |
x, y = x.to(device, dtype=x.dtype, non_blocking=True, copy=False), \ | |
y.to(device, dtype=y.dtype, non_blocking=True, copy=False) | |
output = self.infer(x) | |
pred = output.detach().max(dim=1)[1].cpu().numpy() | |
metrics.update((y + 0).cpu().numpy(), pred) | |
res = metrics.get_results() | |
pbar.set_description(f'cur batch mIoU: {res["Mean Acc"]:.4f}') | |
res = metrics.get_results() | |
return res['Mean Acc'] | |
#from new_impl.cv.model import ElasticDNN_ClsOnlineModel | |
elasticfm_model = ElasticDNN_SegOnlineModel('cls', init_online_model( | |
# 'experiments/elasticdnn/vit_b_16/offline/fm_to_md/results/cls_md_index.py/20230529/star_999997-154037-only_prune_mlp/models/fm_best.pt', | |
# 'experiments/elasticdnn/vit_b_16/offline/fm_to_md/results/cls_md_index.py/20230529/star_999997-154037-only_prune_mlp/models/md_best.pt', | |
#'experiments/elasticdnn/vit_b_16/offline/fm_to_md/cls/results/cls_md_index.py/20230617/999992-101343-lr1e-5_index_bug_fixed/models/fm_best.pt', | |
#'experiments/elasticdnn/vit_b_16/offline/fm_to_md/cls/results/cls_md_index.py/20230617/999992-101343-lr1e-5_index_bug_fixed/models/md_best.pt', | |
'new_impl/cv/sam/results/seg_wo_index.py/20231125/999999-175801-/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/cv/sam/seg_wo_index.py/models/fm_best.pt', | |
'new_impl/cv/sam/results/seg_wo_index.py/20231125/999999-175801-/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/cv/sam/seg_wo_index.py/models/md_best.pt', | |
'seg', __file__ | |
), device, { | |
'md_to_fm_alpha': 0.1, | |
'fm_to_md_alpha': 0.1 | |
},scenario.num_classes) | |
da_alg = FeatAlignAlg | |
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup | |
#from new_impl.cv.model import ClsOnlineFeatAlignModel | |
da_model = SegOnlineFeatAlignModel | |
da_alg_hyp = {'Cityscapes': { | |
'train_batch_size': 16, | |
'val_batch_size': 128, | |
'num_workers': 16, | |
'optimizer': 'AdamW', | |
'optimizer_args': {'lr': 3e-5, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, | |
'scheduler': '', | |
'scheduler_args': {}, | |
'num_iters': 100, | |
'val_freq': 20, | |
'sd_sparsity': 0.5, | |
'feat_align_loss_weight': 0.3 | |
}, 'BaiduPerson': { | |
'train_batch_size': 16, | |
'val_batch_size': 128, | |
'num_workers': 16, | |
'optimizer': 'AdamW', | |
'optimizer_args': {'lr': 1e-7,'betas': [0.9, 0.999], 'weight_decay': 0.01}, | |
'scheduler': '', | |
'scheduler_args': {}, | |
'num_iters': 100, | |
'val_freq': 20, | |
'sd_sparsity': 0.5, | |
'feat_align_loss_weight': 0.3 | |
}} | |
elasticfm_da( | |
[app_name], | |
[scenario], | |
[elasticfm_model], | |
[da_alg], | |
[da_alg_hyp], | |
[da_model], | |
device, | |
settings, | |
__file__, | |
sys.argv[0] | |
) | |