|
from ..data_aug import cityscapes_like_image_train_aug, cityscapes_like_image_test_aug, cityscapes_like_label_aug |
|
|
|
from ..ab_dataset import ABDataset |
|
from ..dataset_split import train_val_test_split |
|
import numpy as np |
|
from typing import Dict, List, Optional |
|
from torchvision.transforms import Compose, Lambda |
|
import os |
|
|
|
from .common_dataset import VideoDataset |
|
from ..registery import dataset_register |
|
|
|
|
|
@dataset_register( |
|
name='IXMAS', |
|
classes=['check_watch', 'cross_arms', 'get_up', 'kick', 'pick_up', 'point', 'punch', 'scratch_head', 'sit_down', 'turn_around', 'walk', 'wave'], |
|
task_type='Action Recognition', |
|
object_type='Web Video', |
|
|
|
class_aliases=[], |
|
shift_type=None |
|
) |
|
class IXMAS(ABDataset): |
|
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], |
|
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset = VideoDataset([root_dir], mode='train') |
|
|
|
if len(ignore_classes) > 0: |
|
for ignore_class in ignore_classes: |
|
ci = classes.index(ignore_class) |
|
dataset.fnames = [img for img, label in zip(dataset.fnames, dataset.label_array) if label != ci] |
|
dataset.label_array = [label for label in dataset.label_array if label != ci] |
|
|
|
if idx_map is not None: |
|
dataset.label_array = [idx_map[label] for label in dataset.label_array] |
|
|
|
dataset = train_val_test_split(dataset, split) |
|
return dataset |
|
|