|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class SiLU(nn.Module): |
|
"""export-friendly version of nn.SiLU()""" |
|
|
|
@staticmethod |
|
def forward(x): |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
def get_activation(name="silu", inplace=True): |
|
if name == "silu": |
|
module = nn.SiLU(inplace=inplace) |
|
elif name == "relu": |
|
module = nn.ReLU(inplace=inplace) |
|
elif name == "lrelu": |
|
module = nn.LeakyReLU(0.1, inplace=inplace) |
|
else: |
|
raise AttributeError("Unsupported act type: {}".format(name)) |
|
return module |
|
|
|
|
|
class BaseConv(nn.Module): |
|
"""A Conv2d -> Batchnorm -> silu/leaky relu block""" |
|
|
|
def __init__( |
|
self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu" |
|
): |
|
super().__init__() |
|
|
|
pad = (ksize - 1) // 2 |
|
self.conv = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=ksize, |
|
stride=stride, |
|
padding=pad, |
|
groups=groups, |
|
bias=bias, |
|
) |
|
self.bn = nn.BatchNorm2d(out_channels) |
|
self.act = get_activation(act, inplace=True) |
|
|
|
def forward(self, x): |
|
return self.act(self.bn(self.conv(x))) |
|
|
|
def fuseforward(self, x): |
|
return self.act(self.conv(x)) |
|
|
|
|
|
class DWConv(nn.Module): |
|
"""Depthwise Conv + Conv""" |
|
|
|
def __init__(self, in_channels, out_channels, ksize, stride=1, act="silu"): |
|
super().__init__() |
|
self.dconv = BaseConv( |
|
in_channels, |
|
in_channels, |
|
ksize=ksize, |
|
stride=stride, |
|
groups=in_channels, |
|
act=act, |
|
) |
|
self.pconv = BaseConv( |
|
in_channels, out_channels, ksize=1, stride=1, groups=1, act=act |
|
) |
|
|
|
def forward(self, x): |
|
x = self.dconv(x) |
|
return self.pconv(x) |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
shortcut=True, |
|
expansion=0.5, |
|
depthwise=False, |
|
act="silu", |
|
): |
|
super().__init__() |
|
hidden_channels = int(out_channels * expansion) |
|
Conv = DWConv if depthwise else BaseConv |
|
self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act) |
|
self.conv2 = Conv(hidden_channels, out_channels, 3, stride=1, act=act) |
|
self.use_add = shortcut and in_channels == out_channels |
|
|
|
def forward(self, x): |
|
y = self.conv2(self.conv1(x)) |
|
if self.use_add: |
|
y = y + x |
|
return y |
|
|
|
|
|
class ResLayer(nn.Module): |
|
"Residual layer with `in_channels` inputs." |
|
|
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
mid_channels = in_channels // 2 |
|
self.layer1 = BaseConv( |
|
in_channels, mid_channels, ksize=1, stride=1, act="lrelu" |
|
) |
|
self.layer2 = BaseConv( |
|
mid_channels, in_channels, ksize=3, stride=1, act="lrelu" |
|
) |
|
|
|
def forward(self, x): |
|
out = self.layer2(self.layer1(x)) |
|
return x + out |
|
|
|
|
|
class SPPBottleneck(nn.Module): |
|
"""Spatial pyramid pooling layer used in YOLOv3-SPP""" |
|
|
|
def __init__( |
|
self, in_channels, out_channels, kernel_sizes=(5, 9, 13), activation="silu" |
|
): |
|
super().__init__() |
|
hidden_channels = in_channels // 2 |
|
self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=activation) |
|
self.m = nn.ModuleList( |
|
[ |
|
nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) |
|
for ks in kernel_sizes |
|
] |
|
) |
|
conv2_channels = hidden_channels * (len(kernel_sizes) + 1) |
|
self.conv2 = BaseConv(conv2_channels, out_channels, 1, stride=1, act=activation) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = torch.cat([x] + [m(x) for m in self.m], dim=1) |
|
x = self.conv2(x) |
|
return x |
|
|
|
|
|
class CSPLayer(nn.Module): |
|
"""C3 in yolov5, CSP Bottleneck with 3 convolutions""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
n=1, |
|
shortcut=True, |
|
expansion=0.5, |
|
depthwise=False, |
|
act="silu", |
|
): |
|
""" |
|
Args: |
|
in_channels (int): input channels. |
|
out_channels (int): output channels. |
|
n (int): number of Bottlenecks. Default value: 1. |
|
""" |
|
|
|
super().__init__() |
|
hidden_channels = int(out_channels * expansion) |
|
self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act) |
|
self.conv2 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act) |
|
self.conv3 = BaseConv(2 * hidden_channels, out_channels, 1, stride=1, act=act) |
|
module_list = [ |
|
Bottleneck( |
|
hidden_channels, hidden_channels, shortcut, 1.0, depthwise, act=act |
|
) |
|
for _ in range(n) |
|
] |
|
self.m = nn.Sequential(*module_list) |
|
|
|
def forward(self, x): |
|
x_1 = self.conv1(x) |
|
x_2 = self.conv2(x) |
|
x_1 = self.m(x_1) |
|
x = torch.cat((x_1, x_2), dim=1) |
|
return self.conv3(x) |
|
|
|
|
|
class Focus(nn.Module): |
|
"""Focus width and height information into channel space.""" |
|
|
|
def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu"): |
|
super().__init__() |
|
self.conv = BaseConv(in_channels * 4, out_channels, ksize, stride, act=act) |
|
|
|
def forward(self, x): |
|
|
|
patch_top_left = x[..., ::2, ::2] |
|
patch_top_right = x[..., ::2, 1::2] |
|
patch_bot_left = x[..., 1::2, ::2] |
|
patch_bot_right = x[..., 1::2, 1::2] |
|
x = torch.cat( |
|
( |
|
patch_top_left, |
|
patch_bot_left, |
|
patch_top_right, |
|
patch_bot_right, |
|
), |
|
dim=1, |
|
) |
|
return self.conv(x) |
|
|