|
|
|
|
|
|
|
|
|
import os |
|
|
|
import numpy as np |
|
|
|
__all__ = ["mkdir", "nms", "multiclass_nms", "demo_postprocess"] |
|
|
|
|
|
def mkdir(path): |
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
|
|
|
|
def nms(boxes, scores, nms_thr): |
|
"""Single class NMS implemented in Numpy.""" |
|
x1 = boxes[:, 0] |
|
y1 = boxes[:, 1] |
|
x2 = boxes[:, 2] |
|
y2 = boxes[:, 3] |
|
|
|
areas = (x2 - x1 + 1) * (y2 - y1 + 1) |
|
order = scores.argsort()[::-1] |
|
|
|
keep = [] |
|
while order.size > 0: |
|
i = order[0] |
|
keep.append(i) |
|
xx1 = np.maximum(x1[i], x1[order[1:]]) |
|
yy1 = np.maximum(y1[i], y1[order[1:]]) |
|
xx2 = np.minimum(x2[i], x2[order[1:]]) |
|
yy2 = np.minimum(y2[i], y2[order[1:]]) |
|
|
|
w = np.maximum(0.0, xx2 - xx1 + 1) |
|
h = np.maximum(0.0, yy2 - yy1 + 1) |
|
inter = w * h |
|
ovr = inter / (areas[i] + areas[order[1:]] - inter) |
|
|
|
inds = np.where(ovr <= nms_thr)[0] |
|
order = order[inds + 1] |
|
|
|
return keep |
|
|
|
|
|
def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True): |
|
"""Multiclass NMS implemented in Numpy""" |
|
if class_agnostic: |
|
nms_method = multiclass_nms_class_agnostic |
|
else: |
|
nms_method = multiclass_nms_class_aware |
|
return nms_method(boxes, scores, nms_thr, score_thr) |
|
|
|
|
|
def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr): |
|
"""Multiclass NMS implemented in Numpy. Class-aware version.""" |
|
final_dets = [] |
|
num_classes = scores.shape[1] |
|
for cls_ind in range(num_classes): |
|
cls_scores = scores[:, cls_ind] |
|
valid_score_mask = cls_scores > score_thr |
|
if valid_score_mask.sum() == 0: |
|
continue |
|
else: |
|
valid_scores = cls_scores[valid_score_mask] |
|
valid_boxes = boxes[valid_score_mask] |
|
keep = nms(valid_boxes, valid_scores, nms_thr) |
|
if len(keep) > 0: |
|
cls_inds = np.ones((len(keep), 1)) * cls_ind |
|
dets = np.concatenate( |
|
[valid_boxes[keep], valid_scores[keep, None], cls_inds], 1 |
|
) |
|
final_dets.append(dets) |
|
if len(final_dets) == 0: |
|
return None |
|
return np.concatenate(final_dets, 0) |
|
|
|
|
|
def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr): |
|
"""Multiclass NMS implemented in Numpy. Class-agnostic version.""" |
|
cls_inds = scores.argmax(1) |
|
cls_scores = scores[np.arange(len(cls_inds)), cls_inds] |
|
|
|
valid_score_mask = cls_scores > score_thr |
|
if valid_score_mask.sum() == 0: |
|
return None |
|
valid_scores = cls_scores[valid_score_mask] |
|
valid_boxes = boxes[valid_score_mask] |
|
valid_cls_inds = cls_inds[valid_score_mask] |
|
keep = nms(valid_boxes, valid_scores, nms_thr) |
|
if keep: |
|
dets = np.concatenate( |
|
[valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1 |
|
) |
|
return dets |
|
|
|
|
|
def demo_postprocess(outputs, img_size, p6=False): |
|
|
|
grids = [] |
|
expanded_strides = [] |
|
|
|
if not p6: |
|
strides = [8, 16, 32] |
|
else: |
|
strides = [8, 16, 32, 64] |
|
|
|
hsizes = [img_size[0] // stride for stride in strides] |
|
wsizes = [img_size[1] // stride for stride in strides] |
|
|
|
for hsize, wsize, stride in zip(hsizes, wsizes, strides): |
|
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize)) |
|
grid = np.stack((xv, yv), 2).reshape(1, -1, 2) |
|
grids.append(grid) |
|
shape = grid.shape[:2] |
|
expanded_strides.append(np.full((*shape, 1), stride)) |
|
|
|
grids = np.concatenate(grids, 1) |
|
expanded_strides = np.concatenate(expanded_strides, 1) |
|
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides |
|
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides |
|
|
|
return outputs |
|
|