LINC-BIT's picture
Upload 1912 files
b84549f verified
from typing import List
from data.dataloader import build_dataloader
# from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel
import torch
import sys
from torch import nn
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from methods.elasticdnn.model.bert import ElasticBertUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg
import tqdm
from methods.feat_align.mmd import mmd_rbf
class ElasticDNN_POSOnlineModel(ElasticDNN_OnlineModel):
def get_accuracy(self, test_loader, *args, **kwargs):
acc = 0
sample_num = 0
self.to_eval_mode()
with torch.no_grad():
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
for batch_index, (x, y) in pbar:
for k, v in x.items():
if isinstance(v, torch.Tensor):
x[k] = v.to(self.device)
# print(x)
y = y.to(self.device)
output = self.infer(x)
# torch.Size([16, 512, 43]) torch.Size([16, 512])
for oi, yi, xi in zip(output, y, x['input_ids']):
# oi: 512, 43; yi: 512
seq_len = xi.nonzero().size(0)
# print(output.size(), y.size())
pred = F.softmax(oi, dim=-1).argmax(dim=-1)
correct = torch.eq(pred[1: seq_len], yi[1: seq_len]).sum().item()
# print(output.size(), y.size())
acc += correct
sample_num += seq_len
# pbar.set_description(f'seq_len: {seq_len}, cur_seq_acc: {(correct / seq_len):.4f}')
acc /= sample_num
return acc
def get_elastic_dnn_util(self) -> ElasticDNNUtil:
return ElasticBertUtil()
def get_fm_matched_param_of_md_param(self, md_param_name):
# only between qkv.weight, norm.weight/bias
self_param_name = md_param_name
fm = self.models_dict['fm']
if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]):
return None
p = get_parameter(self.models_dict['md'], self_param_name)
if p.dim() == 0:
return None
elif p.dim() == 1 and 'LayerNorm' in self_param_name and 'weight' in self_param_name:
return get_parameter(fm, self_param_name)
# 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
if ('query' in self_param_name or 'key' in self_param_name or \
'value' in self_param_name) and ('weight' in self_param_name):
ss = self_param_name.split('.')
fm_qkv_name = '.'.join(ss[0: -1]) + '.fc'
fm_qkv = get_module(fm, fm_qkv_name)
fm_abs_name = '.'.join(ss[0: -1]) + '.ab'
fm_abs = get_module(fm, fm_abs_name)
# NOTE: unrecoverable operation! multiply LoRA parameters to allow it being updated in update_fm_param()
# TODO: if fm will be used for inference, _mul_lora_weight will not be applied!
if not hasattr(fm_abs, '_mul_lora_weight'):
logger.debug(f'set _mul_lora_weight in {fm_abs_name}')
setattr(fm_abs, '_mul_lora_weight',
nn.Parameter(fm_abs[1].weight @ fm_abs[0].weight))
return torch.cat([
fm_qkv.weight.data, # task-agnositc params
fm_abs._mul_lora_weight.data # task-specific params (LoRA)
], dim=0)
# elif 'to_qkv.bias' in self_param_name:
# ss = self_param_name.split('.')
# fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
# return get_parameter(fm, fm_qkv_name)
elif 'dense' in self_param_name and 'weight' in self_param_name:
fm_param_name = self_param_name.replace('.linear', '')
return get_parameter(fm, fm_param_name)
# elif 'mlp.fc2' in self_param_name and 'weight' in self_param_name:
# fm_param_name = self_param_name
# return get_parameter(fm, fm_param_name)
else:
# return get_parameter(fm, self_param_name)
return None
def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param):
if not ('query' in md_param_name or 'key' in md_param_name or 'value' in md_param_name):
matched_fm_param_ref = self.get_fm_matched_param_of_md_param(md_param_name)
matched_fm_param_ref.copy_(cal_new_fm_param_by_md_param)
else:
new_fm_attn_weight, new_fm_lora_weight = torch.chunk(cal_new_fm_param_by_md_param, 2, 0)
ss = md_param_name.split('.')
fm = self.models_dict['fm']
# update task-agnostic parameters
fm_qkv_name = '.'.join(ss[0: -1]) + '.fc'
fm_qkv = get_module(fm, fm_qkv_name)
fm_qkv.weight.data.copy_(new_fm_attn_weight)
# update task-specific parameters
fm_abs_name = '.'.join(ss[0: -1]) + '.ab'
fm_abs = get_module(fm, fm_abs_name)
fm_abs._mul_lora_weight.data.copy_(new_fm_lora_weight) # TODO: this will not be applied in inference!
def get_md_matched_param_of_fm_param(self, fm_param_name):
return super().get_md_matched_param_of_fm_param(fm_param_name)
def get_md_matched_param_of_sd_param(self, sd_param_name):
# raise NotImplementedError
# only between qkv.weight, norm.weight/bias
self_param_name = sd_param_name
md = self.models_dict['md']
if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]):
return None
p = get_parameter(self.models_dict['sd'], self_param_name)
if p.dim() == 0:
return None
elif p.dim() == 1 and 'LayerNorm' in self_param_name and 'weight' in self_param_name:
return get_parameter(md, self_param_name)
# 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
if ('query' in self_param_name or 'key' in self_param_name or \
'value' in self_param_name) and ('weight' in self_param_name):
return get_parameter(md, self_param_name) # NOTE: no fbs in qkv!
# elif 'to_qkv.bias' in self_param_name:
# ss = self_param_name.split('.')
# fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
# return get_parameter(fm, fm_qkv_name)
elif 'intermediate.dense.0.weight' in self_param_name:
fm_param_name = '.'.join(self_param_name.split('.')[0: -2]) + '.linear.weight'
return get_parameter(md, fm_param_name)
elif 'output.dense' in self_param_name and 'weight' in self_param_name:
fm_param_name = self_param_name
return get_parameter(md, fm_param_name)
else:
# return get_parameter(fm, self_param_name)
return None
def get_task_head_params(self):
head = get_module(self.models_dict['sd'], 'classifier')
return list(head.parameters())
class POSOnlineFeatAlignModel(OnlineFeatAlignModel):
def get_trained_params(self):
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'query' in n or 'key' in n or 'value' in n or 'dense' in n or 'LayerNorm' in n]
return qkv_and_norm_params
def get_feature_hook(self):
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), False, self.device)
def forward_to_get_task_loss(self, x, y):
self.to_train_mode()
o = self.infer(x)
return F.cross_entropy(o.view(-1, o.size(-1)), y.view(-1))
def get_mmd_loss(self, f1, f2):
# print(f1.size())
# return mmd_rbf(f1.mean(1).flatten(1), f2.mean(1).flatten(1))
return mmd_rbf(f1.flatten(1), f2.flatten(1))
def infer(self, x, *args, **kwargs):
return self.models_dict['main'](**x)
def get_accuracy(self, test_loader, *args, **kwargs):
acc = 0
sample_num = 0
self.to_eval_mode()
with torch.no_grad():
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
for batch_index, (x, y) in pbar:
for k, v in x.items():
if isinstance(v, torch.Tensor):
x[k] = v.to(self.device)
# print(x)
y = y.to(self.device)
output = self.infer(x)
# torch.Size([16, 512, 43]) torch.Size([16, 512])
for oi, yi, xi in zip(output, y, x['input_ids']):
# oi: 512, 43; yi: 512
seq_len = xi.nonzero().size(0)
# print(output.size(), y.size())
pred = F.softmax(oi, dim=-1).argmax(dim=-1)
correct = torch.eq(pred[1: seq_len], yi[1: seq_len]).sum().item()
# print(output.size(), y.size())
acc += correct
sample_num += seq_len
# pbar.set_description(f'seq_len: {seq_len}, cur_seq_acc: {(correct / seq_len):.4f}')
acc /= sample_num
return acc