|
import os |
|
gpt_neo_series_id = '1.3B_ckpt' |
|
os.environ['gpt_neo_series_id'] = gpt_neo_series_id |
|
import torch |
|
import torch.nn as nn |
|
from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg |
|
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg |
|
from methods.elasticdnn.model.base import ElasticDNNUtil |
|
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util |
|
from gpt_neo import getTokenizer, ElasticGPTUtil, FMLoRA_GPT_Util, ElasticDNN_OfflineTextGenFMModel, ElasticDNN_OfflineTextGenMDModel, FM_to_MD_GPT_Util, collate_fn |
|
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util |
|
from methods.elasticdnn.model.vit import ElasticViTUtil |
|
from methods.elasticdnn.api.algs.md_pretraining_index_v2_train_index_and_md import ElasticDNN_MDPretrainingIndexAlg |
|
from utils.dl.common.model import LayerActivation2, get_module, get_parameter |
|
from utils.common.exp import save_models_dict_for_init, get_res_save_dir |
|
from data import build_gen_scenario |
|
import torch.nn.functional as F |
|
import os |
|
from utils.dl.common.loss import CrossEntropyLossSoft |
|
from new_impl.cv.feat_align.main_gpt_neo import OnlineFeatAlignModel, FeatAlignAlg |
|
import tqdm |
|
from new_impl.cv.feat_align.mmd import mmd_rbf |
|
from new_impl.cv.utils.baseline_da import baseline_da |
|
from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel |
|
from utils.common.log import logger |
|
import nltk |
|
from nltk.translate.bleu_score import sentence_bleu, corpus_bleu |
|
from nltk.translate.bleu_score import SmoothingFunction |
|
import json |
|
|
|
|
|
os.environ['TOKENIZERS_PARALLELISM'] = 'true' |
|
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' |
|
torch.cuda.set_device(1) |
|
device = 'cuda' |
|
app_name = 'cls' |
|
|
|
scenario = build_gen_scenario( |
|
source_datasets_name=['No_robots'], |
|
target_datasets_order=['Medicine_task', 'Law_task'] * 10, |
|
da_mode='close_set', |
|
data_dirs={ |
|
'No_robots': '/data/zql/datasets/no_robots', |
|
'Law_task': '/data/zql/datasets/law_task', |
|
'Medicine_task': '/data/zql/datasets/medicine_task', |
|
}, |
|
) |
|
|
|
class TxtgenOnlineFeatAlignModel(OnlineFeatAlignModel): |
|
def get_trained_params(self): |
|
|
|
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters()] |
|
return qkv_and_norm_params |
|
|
|
def get_feature_hook(self) -> LayerActivation2: |
|
return LayerActivation2(get_module(self.models_dict['main'], 'model.lm_head')) |
|
|
|
def forward_to_get_task_loss(self, x, y): |
|
losses = self.infer(x) |
|
|
|
|
|
return losses |
|
|
|
def get_mmd_loss(self, f1, f2): |
|
common_shape = min(f1.shape[0], f2.shape[0]) |
|
f1 = f1.view(f1.shape[0], -1) |
|
f2 = f2.view(f2.shape[0], -1) |
|
f1 = f1[:common_shape,:] |
|
f2 = f2[:common_shape,:] |
|
return mmd_rbf(f1, f2) |
|
|
|
def infer(self, x, *args, **kwargs): |
|
return self.models_dict['main'](**x) |
|
|
|
def get_accuracy(self, test_loader, *args, **kwargs): |
|
acc = 0 |
|
sample_num = 0 |
|
tokenizer = getTokenizer() |
|
self.to_eval_mode() |
|
pred_txt = [] |
|
true_txt = [] |
|
res = [] |
|
with torch.no_grad(): |
|
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) |
|
for batch_index, (x, _) in pbar: |
|
if len(x) == 0: |
|
continue |
|
|
|
|
|
for k, v in x.items(): |
|
if isinstance(v, torch.Tensor): |
|
x[k] = v.to(self.device) |
|
|
|
inputlen = x['len'] |
|
y = x['labels'] |
|
x['labels'] = None |
|
outputs = self.models_dict['main'].generate(x, pad_id=tokenizer.pad_token_id) |
|
|
|
for i, op in enumerate(outputs): |
|
op = op.tolist() |
|
op = list(filter(lambda x: x != tokenizer.pad_token_id, op)) |
|
txt = tokenizer.decode(op) |
|
txt = txt.replace(tokenizer.pad_token, "") |
|
res.append(txt) |
|
txt = txt[inputlen[i]:] |
|
pred_txt.append(nltk.word_tokenize(txt)) |
|
for tp in y: |
|
true_txt.append(nltk.word_tokenize(tokenizer.decode(tp).replace(tokenizer.pad_token, ''))) |
|
|
|
|
|
|
|
sample_num += len(y) |
|
|
|
|
|
|
|
json.dump(res, open("./gpt_generation.json", "w")) |
|
smooth = SmoothingFunction() |
|
score = 0. |
|
for pred, true in zip(pred_txt, true_txt): |
|
score += sentence_bleu([true], pred, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smooth.method1) |
|
score /= sample_num |
|
return score |
|
|
|
da_alg = FeatAlignAlg |
|
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup |
|
|
|
da_model = TxtgenOnlineFeatAlignModel( |
|
app_name, |
|
'new_impl/nlp/gpt-neo/text_generation/results/gen_md_wo_fbs.py/20240113/999999-172009/models/md_best.pt', |
|
device |
|
) |
|
da_alg_hyp = { |
|
'Medicine_task': { |
|
'train_batch_size': 2, |
|
'val_batch_size': 1, |
|
'num_workers': 2, |
|
'optimizer': 'AdamW', |
|
'optimizer_args': {'lr': 5e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, |
|
'scheduler': '', |
|
'scheduler_args': {}, |
|
'num_iters': 1000, |
|
'val_freq': 200, |
|
'feat_align_loss_weight': 1.0, |
|
}, |
|
'Law_task': { |
|
'train_batch_size': 2, |
|
'val_batch_size': 1, |
|
'num_workers': 2, |
|
'optimizer': 'AdamW', |
|
'optimizer_args': {'lr': 5e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, |
|
'scheduler': '', |
|
'scheduler_args': {}, |
|
'num_iters': 1000, |
|
'val_freq': 200, |
|
'feat_align_loss_weight': 1.0, |
|
}, |
|
} |
|
|
|
|
|
baseline_da( |
|
app_name, |
|
scenario, |
|
da_alg, |
|
da_alg_hyp, |
|
da_model, |
|
device, |
|
__file__, |
|
"results", |
|
collate_fn=collate_fn |
|
) |