LINC-BIT's picture
Upload 1912 files
b84549f verified
import os
gpt_neo_series_id = '1.3B_ckpt'
os.environ['gpt_neo_series_id'] = gpt_neo_series_id
import torch
import torch.nn as nn
from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from gpt_neo import getTokenizer, ElasticGPTUtil, FMLoRA_GPT_Util, ElasticDNN_OfflineTextGenFMModel, ElasticDNN_OfflineTextGenMDModel, FM_to_MD_GPT_Util, collate_fn
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from methods.elasticdnn.model.vit import ElasticViTUtil
from methods.elasticdnn.api.algs.md_pretraining_index_v2_train_index_and_md import ElasticDNN_MDPretrainingIndexAlg
from utils.dl.common.model import LayerActivation2, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_gen_scenario
import torch.nn.functional as F
import os
from utils.dl.common.loss import CrossEntropyLossSoft
from new_impl.cv.feat_align.main_gpt_neo import OnlineFeatAlignModel, FeatAlignAlg
import tqdm
from new_impl.cv.feat_align.mmd import mmd_rbf
from new_impl.cv.utils.elasticfm_da import init_online_model, elasticfm_da
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel
from utils.common.log import logger
import nltk
from nltk.translate.bleu_score import sentence_bleu, corpus_bleu
from nltk.translate.bleu_score import SmoothingFunction
import json
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
device = 'cuda:1'
app_name = 'cls'
sd_sparsity = 0.8
settings = {
'involve_fm': True
}
torch.cuda.set_device(1)
scenario = build_gen_scenario(
source_datasets_name=['No_robots'],
target_datasets_order=['Medicine_task', 'Law_task'] * 10,
da_mode='close_set',
data_dirs={
'No_robots': '/data/zql/datasets/no_robots',
'Law_task': '/data/zql/datasets/law_task',
'Medicine_task': '/data/zql/datasets/medicine_task',
},
)
class ElasticDNN_TxtgenOnlineModel(ElasticDNN_OnlineModel):
def get_accuracy(self, test_loader, *args, **kwargs):
acc = 0
sample_num = 0
tokenizer = getTokenizer()
self.to_eval_mode()
pred_txt = []
true_txt = []
res = []
with torch.no_grad():
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
for batch_index, (x, _) in pbar:
if len(x) == 0:
continue
# if batch_index > 10:
# break
for k, v in x.items():
if isinstance(v, torch.Tensor):
x[k] = v.to(self.device)
# input_ids = []
inputlen = x['len']
y = x['labels']
x['labels'] = None
outputs = self.models_dict['main'].generate(x, pad_id=tokenizer.pad_token_id)
for i, op in enumerate(outputs):
op = op.tolist()
op = list(filter(lambda x: x != tokenizer.pad_token_id, op))
txt = tokenizer.decode(op)
txt = txt.replace(tokenizer.pad_token, "")
res.append(txt)
txt = txt[inputlen[i]:]
pred_txt.append(nltk.word_tokenize(txt))
for tp in y:
true_txt.append(nltk.word_tokenize(tokenizer.decode(tp).replace(tokenizer.pad_token, '')))
# pred = F.softmax(output, dim=1).argmax(dim=1)
# correct = torch.eq(pred, y).sum().item()
# acc += correct
sample_num += len(y)
# pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, '
# f'cur_batch_acc: {(correct / len(y)):.4f}')
json.dump(res, open("./gpt_generation.json", "w"))
smooth = SmoothingFunction()
score = 0.
for pred, true in zip(pred_txt, true_txt):
score += sentence_bleu([true], pred, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smooth.method1)
score /= sample_num
return score
def get_elastic_dnn_util(self) -> ElasticDNNUtil:
return ElasticGPTUtil()
def get_fm_matched_param_of_md_param(self, md_param_name):
# only between qkv.weight, norm.weight/bias
self_param_name = md_param_name
fm = self.models_dict['fm']
# if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]):
# return None
# p = get_parameter(self.models_dict['md'], self_param_name)
# if p.dim() == 0:
# return None
# elif p.dim() == 1 and 'norm' in self_param_name and 'weight' in self_param_name:
# return get_parameter(fm, self_param_name)
if any([k in self_param_name for k in ['fbs', 'wte', 'wpe']]):
return None
p = get_parameter(self.models_dict['md'], self_param_name)
if p.dim() == 0:
return None
# elif p.dim() == 1 and 'layernorm' in self_param_name and 'weight' in self_param_name:
# return get_parameter(fm, self_param_name)
# 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
# if 'qkv.weight' in self_param_name:
# ss = self_param_name.split('.')
# fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv'
# fm_qkv = get_module(fm, fm_qkv_name)
# fm_abs_name = '.'.join(ss[0: -1]) + '.abs'
# fm_abs = get_module(fm, fm_abs_name)
# # NOTE: unrecoverable operation! multiply LoRA parameters to allow it being updated in update_fm_param()
# # TODO: if fm will be used for inference, _mul_lora_weight will not be applied!
# if not hasattr(fm_abs, '_mul_lora_weight'):
# logger.debug(f'set _mul_lora_weight in {fm_abs_name}')
# setattr(fm_abs, '_mul_lora_weight',
# nn.Parameter(torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0)))
# return torch.cat([
# fm_qkv.weight.data, # task-agnositc params
# fm_abs._mul_lora_weight.data # task-specific params (LoRA)
# ], dim=0)
# # elif 'to_qkv.bias' in self_param_name:
# # ss = self_param_name.split('.')
# # fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
# # return get_parameter(fm, fm_qkv_name)
# elif 'mlp.fc1' in self_param_name and 'weight' in self_param_name:
# fm_param_name = self_param_name.replace('.linear', '')
# return get_parameter(fm, fm_param_name)
# elif 'mlp.fc2' in self_param_name and 'weight' in self_param_name:
# fm_param_name = self_param_name
# return get_parameter(fm, fm_param_name)
# else:
# # return get_parameter(fm, self_param_name)
# return None
if ('q_proj' in self_param_name or 'k_proj' in self_param_name or \
'v_proj' in self_param_name) and ('weight' in self_param_name):
ss = self_param_name.split('.')
fm_qkv_name = '.'.join(ss[0: -1]) + '.fc'
fm_qkv = get_module(fm, fm_qkv_name)
fm_abs_name = '.'.join(ss[0: -1]) + '.ab'
fm_abs = get_module(fm, fm_abs_name)
if not hasattr(fm_abs, '_mul_lora_weight'):
logger.debug(f'set _mul_lora_weight in {fm_abs_name}')
setattr(fm_abs, '_mul_lora_weight',
nn.Parameter(fm_abs[1].weight @ fm_abs[0].weight))
return torch.cat([
fm_qkv.weight.data, # task-agnositc params
fm_abs._mul_lora_weight.data # task-specific params (LoRA)
], dim=0)
elif ('q_proj' in self_param_name or 'k_proj' in self_param_name or \
'v_proj' in self_param_name) and ('bias' in self_param_name):
ss = self_param_name.split('.')
fm_qkv_name = '.'.join(ss[0: -1]) + '.fc.bias'
return get_parameter(fm, fm_qkv_name)
elif 'mlp.c_fc' in self_param_name and 'weight' in self_param_name:
fm_param_name = self_param_name.replace('.linear', '')
return get_parameter(fm, fm_param_name)
elif 'mlp.c_fc' in self_param_name and 'bias' in self_param_name:
fm_param_name = self_param_name.replace('.linear', '')
return get_parameter(fm, fm_param_name)
# elif 'mlp.fc2' in self_param_name and 'weight' in self_param_name:
# fm_param_name = self_param_name.replace('.linear', '')
# return get_parameter(fm, fm_param_name)
else:
#return get_parameter(fm, self_param_name)
return None
def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param):
if not (('q_proj' in md_param_name or 'k_proj' in md_param_name or \
'v_proj' in md_param_name) and ('weight' in md_param_name)):
matched_fm_param_ref = self.get_fm_matched_param_of_md_param(md_param_name)
matched_fm_param_ref.copy_(cal_new_fm_param_by_md_param)
else:
new_fm_attn_weight, new_fm_lora_weight = torch.chunk(cal_new_fm_param_by_md_param, 2, 0)
ss = md_param_name.split('.')
fm = self.models_dict['fm']
# update task-agnostic parameters
fm_qkv_name = '.'.join(ss[0: -1]) + '.fc'
fm_qkv = get_module(fm, fm_qkv_name)
fm_qkv.weight.data.copy_(new_fm_attn_weight)
# update task-specific parameters
fm_abs_name = '.'.join(ss[0: -1]) + '.ab'
fm_abs = get_module(fm, fm_abs_name)
fm_abs._mul_lora_weight.data.copy_(new_fm_lora_weight) # TODO: this will not be applied in inference!
def get_md_matched_param_of_fm_param(self, fm_param_name):
return super().get_md_matched_param_of_fm_param(fm_param_name)
def get_md_matched_param_of_sd_param(self, sd_param_name):
# raise NotImplementedError
# only between qkv.weight, norm.weight/bias
self_param_name = sd_param_name
md = self.models_dict['md']
if any([k in self_param_name for k in ['fbs', 'wte', 'wpe']]):
return None
p = get_parameter(self.models_dict['sd'], self_param_name)
if p.dim() == 0:
return None
elif p.dim() == 1 and ('LayerNorm' in self_param_name or 'ln' in self_param_name) and 'weight' in self_param_name:
return get_parameter(md, self_param_name)
# 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
if ('q_proj' in self_param_name or 'k_proj' in self_param_name or \
'v_proj' in self_param_name) and ('weight' in self_param_name):
return get_parameter(md, self_param_name) # NOTE: no fbs in qkv!
# elif 'to_qkv.bias' in self_param_name:
# ss = self_param_name.split('.')
# fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
# return get_parameter(fm, fm_qkv_name)
elif 'mlp.c_fc.0.weight' in self_param_name:
fm_param_name = '.'.join(self_param_name.split('.')[0: -2]) + '.linear.weight'
return get_parameter(md, fm_param_name)
elif 'mlp.c_fc.0.bias' in self_param_name:
fm_param_name = '.'.join(self_param_name.split('.')[0: -2]) + '.linear.bias'
return get_parameter(md, fm_param_name)
elif 'mlp.c_proj' in self_param_name and 'weight' in self_param_name:
fm_param_name = self_param_name
return get_parameter(md, fm_param_name)
elif 'static_channel_attention' not in self_param_name:
return get_parameter(md, self_param_name)
# return None
def get_task_head_params(self):
head = get_module(self.models_dict['sd'], 'classifier')
return list(head.parameters())
class TxtgenOnlineFeatAlignModel(OnlineFeatAlignModel):
def get_trained_params(self): # TODO: elastic fm only train a part of params
#qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'attention.attention.projection_query' in n or 'attention.attention.projection_key' in n or 'attention.attention.projection_value' in n or 'intermediate.dense' in n or 'output.dense' in n]
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters()]
return qkv_and_norm_params
def get_feature_hook(self) -> LayerActivation2:
return LayerActivation2(get_module(self.models_dict['main'], 'model.lm_head'))
def forward_to_get_task_loss(self, x, y):
losses = self.infer(x)
# print(losses)
return losses
def get_mmd_loss(self, f1, f2):
common_shape = min(f1.shape[0], f2.shape[0])
f1 = f1.view(f1.shape[0], -1)
f2 = f2.view(f2.shape[0], -1)
f1 = f1[:common_shape,:]
f2 = f2[:common_shape,:]
return mmd_rbf(f1, f2)
def infer(self, x, *args, **kwargs):
return self.models_dict['main'](**x)
def get_accuracy(self, test_loader, *args, **kwargs):
acc = 0
sample_num = 0
tokenizer = getTokenizer()
self.to_eval_mode()
pred_txt = []
true_txt = []
res = []
with torch.no_grad():
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
for batch_index, (x, _) in pbar:
if len(x) == 0:
continue
# if batch_index > 10:
# break
for k, v in x.items():
if isinstance(v, torch.Tensor):
x[k] = v.to(self.device)
# input_ids = []
inputlen = x['len']
y = x['labels']
x['labels'] = None
outputs = self.models_dict['main'].generate(x, pad_id=tokenizer.pad_token_id)
for i, op in enumerate(outputs):
op = op.tolist()
op = list(filter(lambda x: x != tokenizer.pad_token_id, op))
txt = tokenizer.decode(op)
txt = txt.replace(tokenizer.pad_token, "")
res.append(txt)
txt = txt[inputlen[i]:]
pred_txt.append(nltk.word_tokenize(txt))
for tp in y:
true_txt.append(nltk.word_tokenize(tokenizer.decode(tp).replace(tokenizer.pad_token, '')))
# pred = F.softmax(output, dim=1).argmax(dim=1)
# correct = torch.eq(pred, y).sum().item()
# acc += correct
sample_num += len(y)
# pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, '
# f'cur_batch_acc: {(correct / len(y)):.4f}')
json.dump(res, open("./gpt_generation.json", "w"))
smooth = SmoothingFunction()
score = 0.
for pred, true in zip(pred_txt, true_txt):
score += sentence_bleu([true], pred, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smooth.method1)
score /= sample_num
return score
#from new_impl.cv.model import ElasticDNN_ClsOnlineModel
elasticfm_model = ElasticDNN_TxtgenOnlineModel('gen', init_online_model(
'new_impl/nlp/gpt-neo/text_generation/results/gen_md_w_fbs_index.py/20231222/999995-003118-results/models/fm_best.pt',
'new_impl/nlp/gpt-neo/text_generation/results/gen_md_w_fbs_index.py/20231222/999995-003118-results/models/md_best.pt',
'gen', __file__
), device, {
'md_to_fm_alpha': 0.01,
'fm_to_md_alpha': 0.1
})
da_alg = FeatAlignAlg
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup
#from new_impl.cv.model import ClsOnlineFeatAlignModel
da_model = TxtgenOnlineFeatAlignModel
da_alg_hyp = {
'Medicine_task': {
'train_batch_size': 2,
'val_batch_size': 1,
'num_workers': 2,
'optimizer': 'AdamW',
'optimizer_args': {'lr': 1e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01},
'scheduler': '',
'scheduler_args': {},
'num_iters': 1000,
'val_freq': 200,
'sd_sparsity':0.3,
'feat_align_loss_weight': 1.0,
},
'Law_task': {
'train_batch_size': 2,
'val_batch_size': 1,
'num_workers': 2,
'optimizer': 'AdamW',
'optimizer_args': {'lr': 1e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01},
'scheduler': '',
'scheduler_args': {},
'num_iters': 1000,
'val_freq': 200,
'sd_sparsity':0.3,
'feat_align_loss_weight': 1.0,
},
}
elasticfm_da(
[app_name],
[scenario],
[elasticfm_model],
[da_alg],
[da_alg_hyp],
[da_model],
device,
settings,
__file__,
"results",
collate_fn=collate_fn
)