LINC-BIT's picture
Upload 1912 files
b84549f verified
import atexit
import logging
from pathlib import Path
import socket
from subprocess import Popen
import time
from typing import Optional, Union, List, overload, Any
import json_tricks
import colorama
import psutil
import nni.runtime.log
from .config import ExperimentConfig, AlgorithmConfig
from .data import TrialJob, TrialMetricData, TrialResult
from . import launcher
from . import management
from . import rest
from ..tools.nnictl.command_utils import kill_command
_logger = logging.getLogger('nni.experiment')
class Experiment:
"""
Create and stop an NNI experiment.
Attributes
----------
config
Experiment configuration.
port
Web UI port of the experiment, or `None` if it is not running.
"""
@overload
def __init__(self, config: ExperimentConfig) -> None:
"""
Prepare an experiment.
Use `Experiment.run()` to launch it.
Parameters
----------
config
Experiment configuration.
"""
...
@overload
def __init__(self, training_service: Union[str, List[str]]) -> None:
"""
Prepare an experiment, leaving configuration fields to be set later.
Example usage::
experiment = Experiment('remote')
experiment.config.trial_command = 'python3 trial.py'
experiment.config.machines.append(RemoteMachineConfig(ip=..., user_name=...))
...
experiment.run(8080)
Parameters
----------
training_service
Name of training service.
Supported value: "local", "remote", "openpai", "aml", "kubeflow", "frameworkcontroller", "adl" and hybrid training service.
"""
...
def __init__(self, config=None, training_service=None):
nni.runtime.log.init_logger_experiment()
self.config: Optional[ExperimentConfig] = None
self.id: Optional[str] = None
self.port: Optional[int] = None
self._proc: Optional[Popen] = None
self.mode = 'new'
args = [config, training_service] # deal with overloading
if isinstance(args[0], (str, list)):
self.config = ExperimentConfig(args[0])
self.config.tuner = AlgorithmConfig(name='_none_', class_args={})
self.config.assessor = AlgorithmConfig(name='_none_', class_args={})
self.config.advisor = AlgorithmConfig(name='_none_', class_args={})
else:
self.config = args[0]
def start(self, port: int = 8080, debug: bool = False) -> None:
"""
Start the experiment in background.
This method will raise exception on failure.
If it returns, the experiment should have been successfully started.
Parameters
----------
port
The port of web UI.
debug
Whether to start in debug mode.
"""
atexit.register(self.stop)
if self.mode == 'new':
self.id = management.generate_experiment_id()
else:
self.config = launcher.get_stopped_experiment_config(self.id, self.mode)
if self.config.experiment_working_directory is not None:
log_dir = Path(self.config.experiment_working_directory, self.id, 'log')
else:
log_dir = Path.home() / f'nni-experiments/{self.id}/log'
nni.runtime.log.start_experiment_log(self.id, log_dir, debug)
self._proc = launcher.start_experiment(self.id, self.config, port, debug, mode=self.mode)
assert self._proc is not None
self.port = port # port will be None if start up failed
ips = [self.config.nni_manager_ip]
for interfaces in psutil.net_if_addrs().values():
for interface in interfaces:
if interface.family == socket.AF_INET:
ips.append(interface.address)
ips = [f'http://{ip}:{port}' for ip in ips if ip]
msg = 'Web UI URLs: ' + colorama.Fore.CYAN + ' '.join(ips) + colorama.Style.RESET_ALL
_logger.info(msg)
def stop(self) -> None:
"""
Stop background experiment.
"""
_logger.info('Stopping experiment, please wait...')
atexit.unregister(self.stop)
if self.id is not None:
nni.runtime.log.stop_experiment_log(self.id)
if self._proc is not None:
try:
rest.delete(self.port, '/experiment')
except Exception as e:
_logger.exception(e)
_logger.warning('Cannot gracefully stop experiment, killing NNI process...')
kill_command(self._proc.pid)
self.id = None
self.port = None
self._proc = None
_logger.info('Experiment stopped')
def run(self, port: int = 8080, wait_completion: bool = True, debug: bool = False) -> bool:
"""
Run the experiment.
If wait_completion is True, this function will block until experiment finish or error.
Return `True` when experiment done; or return `False` when experiment failed.
Else if wait_completion is False, this function will non-block and return None immediately.
"""
self.start(port, debug)
if wait_completion:
try:
while True:
time.sleep(10)
status = self.get_status()
if status == 'DONE' or status == 'STOPPED':
return True
if status == 'ERROR':
return False
except KeyboardInterrupt:
_logger.warning('KeyboardInterrupt detected')
finally:
self.stop()
@classmethod
def connect(cls, port: int):
"""
Connect to an existing experiment.
Parameters
----------
port
The port of web UI.
"""
experiment = Experiment()
experiment.port = port
experiment.id = experiment.get_experiment_profile().get('id')
status = experiment.get_status()
pid = experiment.get_experiment_metadata(experiment.id).get('pid')
if pid is None:
_logger.warning('Get experiment pid failed, can not stop experiment by stop().')
else:
experiment._proc = psutil.Process(pid)
_logger.info('Connect to port %d success, experiment id is %s, status is %s.', port, experiment.id, status)
return experiment
@classmethod
def resume(cls, experiment_id: str, port: int = 8080, wait_completion: bool = True, debug: bool = False):
"""
Resume a stopped experiment.
Parameters
----------
experiment_id
The stopped experiment id.
port
The port of web UI.
wait_completion
If true, run in the foreground. If false, run in the background.
debug
Whether to start in debug mode.
"""
experiment = Experiment()
experiment.id = experiment_id
experiment.mode = 'resume'
experiment.run(port=port, wait_completion=wait_completion, debug=debug)
if not wait_completion:
return experiment
@classmethod
def view(cls, experiment_id: str, port: int = 8080, non_blocking: bool = False):
"""
View a stopped experiment.
Parameters
----------
experiment_id
The stopped experiment id.
port
The port of web UI.
non_blocking
If false, run in the foreground. If true, run in the background.
"""
debug = False
experiment = Experiment()
experiment.id = experiment_id
experiment.mode = 'view'
experiment.start(port=port, debug=debug)
if non_blocking:
return experiment
else:
try:
while True:
time.sleep(10)
except KeyboardInterrupt:
_logger.warning('KeyboardInterrupt detected')
finally:
experiment.stop()
def get_status(self) -> str:
"""
Return experiment status as a str.
Returns
-------
str
Experiment status.
"""
resp = rest.get(self.port, '/check-status')
return resp['status']
def get_trial_job(self, trial_job_id: str):
"""
Return a trial job.
Parameters
----------
trial_job_id: str
Trial job id.
Returns
-------
TrialJob
A `TrialJob` instance corresponding to `trial_job_id`.
"""
resp = rest.get(self.port, '/trial-jobs/{}'.format(trial_job_id))
return TrialJob(**resp)
def list_trial_jobs(self):
"""
Return information for all trial jobs as a list.
Returns
-------
list
List of `TrialJob`.
"""
resp = rest.get(self.port, '/trial-jobs')
return [TrialJob(**trial_job) for trial_job in resp]
def get_job_statistics(self):
"""
Return trial job statistics information as a dict.
Returns
-------
dict
Job statistics information.
"""
resp = rest.get(self.port, '/job-statistics')
return resp
def get_job_metrics(self, trial_job_id=None):
"""
Return trial job metrics.
Parameters
----------
trial_job_id: str
trial job id. if this parameter is None, all trail jobs' metrics will be returned.
Returns
-------
dict
Each key is a trialJobId, the corresponding value is a list of `TrialMetricData`.
"""
api = '/metric-data/{}'.format(trial_job_id) if trial_job_id else '/metric-data'
resp = rest.get(self.port, api)
metric_dict = {}
for metric in resp:
trial_id = metric["trialJobId"]
if trial_id not in metric_dict:
metric_dict[trial_id] = [TrialMetricData(**metric)]
else:
metric_dict[trial_id].append(TrialMetricData(**metric))
return metric_dict
def get_experiment_profile(self):
"""
Return experiment profile as a dict.
Returns
-------
dict
The profile of the experiment.
"""
resp = rest.get(self.port, '/experiment')
return resp
def get_experiment_metadata(self, exp_id: str):
"""
Return experiment metadata with specified exp_id as a dict.
Returns
-------
dict
The specified experiment metadata.
"""
experiments_metadata = self.get_all_experiments_metadata()
for metadata in experiments_metadata:
if metadata['id'] == exp_id:
return metadata
return {}
def get_all_experiments_metadata(self):
"""
Return all experiments metadata as a list.
Returns
-------
list
The experiments metadata.
"""
resp = rest.get(self.port, '/experiments-info')
return resp
def export_data(self):
"""
Return exported information for all trial jobs.
Returns
-------
list
List of `TrialResult`.
"""
resp = rest.get(self.port, '/export-data')
return [TrialResult(**trial_result) for trial_result in resp]
def _get_query_type(self, key: str):
if key == 'trialConcurrency':
return '?update_type=TRIAL_CONCURRENCY'
if key == 'maxExecDuration':
return '?update_type=MAX_EXEC_DURATION'
if key == 'searchSpace':
return '?update_type=SEARCH_SPACE'
if key == 'maxTrialNum':
return '?update_type=MAX_TRIAL_NUM'
def _update_experiment_profile(self, key: str, value: Any):
"""
Update an experiment's profile
Parameters
----------
key: str
One of `['trial_concurrency', 'max_experiment_duration', 'search_space', 'max_trial_number']`.
value: Any
New value of the key.
"""
api = '/experiment{}'.format(self._get_query_type(key))
experiment_profile = self.get_experiment_profile()
experiment_profile['params'][key] = value
rest.put(self.port, api, experiment_profile)
logging.info('Successfully update %s.', key)
def update_trial_concurrency(self, value: int):
"""
Update an experiment's trial_concurrency
Parameters
----------
value: int
New trial_concurrency value.
"""
self._update_experiment_profile('trialConcurrency', value)
def update_max_experiment_duration(self, value: str):
"""
Update an experiment's max_experiment_duration
Parameters
----------
value: str
Strings like '1m' for one minute or '2h' for two hours.
SUFFIX may be 's' for seconds, 'm' for minutes, 'h' for hours or 'd' for days.
"""
self._update_experiment_profile('maxExecDuration', value)
def update_search_space(self, value: dict):
"""
Update the experiment's search_space.
TODO: support searchspace file.
Parameters
----------
value: dict
New search_space.
"""
value = json_tricks.dumps(value)
self._update_experiment_profile('searchSpace', value)
def update_max_trial_number(self, value: int):
"""
Update an experiment's max_trial_number
Parameters
----------
value: int
New max_trial_number value.
"""
self._update_experiment_profile('maxTrialNum', value)