|
import functools |
|
|
|
from peewee import fn |
|
from playhouse.shortcuts import model_to_dict |
|
from .model import Nb101TrialStats, Nb101TrialConfig |
|
from .graph_util import hash_module, infer_num_vertices |
|
|
|
|
|
def query_nb101_trial_stats(arch, num_epochs, isomorphism=True, reduction=None, include_intermediates=False): |
|
""" |
|
Query trial stats of NAS-Bench-101 given conditions. |
|
|
|
Parameters |
|
---------- |
|
arch : dict or None |
|
If a dict, it is in the format that is described in |
|
:class:`nni.nas.benchmark.nasbench101.Nb101TrialConfig`. Only trial stats |
|
matched will be returned. If none, all architectures in the database will be matched. |
|
num_epochs : int or None |
|
If int, matching results will be returned. Otherwise a wildcard. |
|
isomorphism : boolean |
|
Whether to match essentially-same architecture, i.e., architecture with the |
|
same graph-invariant hash value. |
|
reduction : str or None |
|
If 'none' or None, all trial stats will be returned directly. |
|
If 'mean', fields in trial stats will be averaged given the same trial config. |
|
include_intermediates : boolean |
|
If true, intermediate results will be returned. |
|
|
|
Returns |
|
------- |
|
generator of dict |
|
A generator of :class:`nni.nas.benchmark.nasbench101.Nb101TrialStats` objects, |
|
where each of them has been converted into a dict. |
|
""" |
|
fields = [] |
|
if reduction == 'none': |
|
reduction = None |
|
if reduction == 'mean': |
|
for field_name in Nb101TrialStats._meta.sorted_field_names: |
|
if field_name not in ['id', 'config']: |
|
fields.append(fn.AVG(getattr(Nb101TrialStats, field_name)).alias(field_name)) |
|
elif reduction is None: |
|
fields.append(Nb101TrialStats) |
|
else: |
|
raise ValueError('Unsupported reduction: \'%s\'' % reduction) |
|
query = Nb101TrialStats.select(*fields, Nb101TrialConfig).join(Nb101TrialConfig) |
|
conditions = [] |
|
if arch is not None: |
|
if isomorphism: |
|
num_vertices = infer_num_vertices(arch) |
|
conditions.append(Nb101TrialConfig.hash == hash_module(arch, num_vertices)) |
|
else: |
|
conditions.append(Nb101TrialConfig.arch == arch) |
|
if num_epochs is not None: |
|
conditions.append(Nb101TrialConfig.num_epochs == num_epochs) |
|
if conditions: |
|
query = query.where(functools.reduce(lambda a, b: a & b, conditions)) |
|
if reduction is not None: |
|
query = query.group_by(Nb101TrialStats.config) |
|
for trial in query: |
|
if include_intermediates: |
|
data = model_to_dict(trial) |
|
|
|
data['intermediates'] = [ |
|
{k: v for k, v in model_to_dict(t).items() if k != 'trial'} for t in trial.intermediates |
|
] |
|
yield data |
|
else: |
|
yield model_to_dict(trial) |
|
|