|
import functools |
|
|
|
from peewee import fn |
|
from playhouse.shortcuts import model_to_dict |
|
from .model import Nb201TrialStats, Nb201TrialConfig |
|
|
|
|
|
def query_nb201_trial_stats(arch, num_epochs, dataset, reduction=None, include_intermediates=False): |
|
""" |
|
Query trial stats of NAS-Bench-201 given conditions. |
|
|
|
Parameters |
|
---------- |
|
arch : dict or None |
|
If a dict, it is in the format that is described in |
|
:class:`nni.nas.benchmark.nasbench201.Nb201TrialConfig`. Only trial stats |
|
matched will be returned. If none, all architectures in the database will be matched. |
|
num_epochs : int or None |
|
If int, matching results will be returned. Otherwise a wildcard. |
|
dataset : str or None |
|
If specified, can be one of the dataset available in :class:`nni.nas.benchmark.nasbench201.Nb201TrialConfig`. |
|
Otherwise a wildcard. |
|
reduction : str or None |
|
If 'none' or None, all trial stats will be returned directly. |
|
If 'mean', fields in trial stats will be averaged given the same trial config. |
|
include_intermediates : boolean |
|
If true, intermediate results will be returned. |
|
|
|
Returns |
|
------- |
|
generator of dict |
|
A generator of :class:`nni.nas.benchmark.nasbench201.Nb201TrialStats` objects, |
|
where each of them has been converted into a dict. |
|
""" |
|
fields = [] |
|
if reduction == 'none': |
|
reduction = None |
|
if reduction == 'mean': |
|
for field_name in Nb201TrialStats._meta.sorted_field_names: |
|
if field_name not in ['id', 'config', 'seed']: |
|
fields.append(fn.AVG(getattr(Nb201TrialStats, field_name)).alias(field_name)) |
|
elif reduction is None: |
|
fields.append(Nb201TrialStats) |
|
else: |
|
raise ValueError('Unsupported reduction: \'%s\'' % reduction) |
|
query = Nb201TrialStats.select(*fields, Nb201TrialConfig).join(Nb201TrialConfig) |
|
conditions = [] |
|
if arch is not None: |
|
conditions.append(Nb201TrialConfig.arch == arch) |
|
if num_epochs is not None: |
|
conditions.append(Nb201TrialConfig.num_epochs == num_epochs) |
|
if dataset is not None: |
|
conditions.append(Nb201TrialConfig.dataset == dataset) |
|
if conditions: |
|
query = query.where(functools.reduce(lambda a, b: a & b, conditions)) |
|
if reduction is not None: |
|
query = query.group_by(Nb201TrialStats.config) |
|
for trial in query: |
|
if include_intermediates: |
|
data = model_to_dict(trial) |
|
|
|
data['intermediates'] = [ |
|
{k: v for k, v in model_to_dict(t).items() if k != 'trial'} for t in trial.intermediates |
|
] |
|
yield data |
|
else: |
|
yield model_to_dict(trial) |
|
|