|
import os |
|
|
|
from peewee import CharField, FloatField, ForeignKeyField, IntegerField, Model |
|
from playhouse.sqlite_ext import JSONField, SqliteExtDatabase |
|
|
|
from nni.nas.benchmarks.utils import json_dumps |
|
from nni.nas.benchmarks.constants import DATABASE_DIR |
|
|
|
db = SqliteExtDatabase(os.path.join(DATABASE_DIR, 'nlp.db'), autoconnect=True) |
|
|
|
class NlpTrialConfig(Model): |
|
""" |
|
Trial config for NLP. epoch_num is fixed at 50. |
|
|
|
Attributes |
|
---------- |
|
arch: dict |
|
aka recepie in NAS-NLP-Benchmark repo (https://github.com/fmsnew/nas-bench-nlp-release). |
|
an arch has multiple Node, Node_input_n and Node_op. |
|
``Node`` can be ``node_n`` or ``h_new_n`` or ``f/i/o/j(_act)`` etc. (n is an int number and need not to be consecutive) |
|
``Node_input_n`` can be ``Node`` or ``x`` etc. |
|
``Node_op`` can be ``linear`` or ``activation_sigm`` or ``activation_tanh`` or ``elementwise_prod`` |
|
or ``elementwise_sum`` or ``activation_leaky_relu`` ... |
|
e.g., {"h_new_0_input_0":"node_3","h_new_0_input_1":"x","h_new_0_op":"linear","node_2_input_0":"x", |
|
"node_2_input_1":"h_prev_0","node_2_op":"linear","node_3_input_0":"node_2","node_3_op":"activation_leaky_relu"} |
|
dataset: str |
|
Dataset used. Could be ``ptb`` or ``wikitext-2``. |
|
""" |
|
arch = JSONField(json_dumps=json_dumps, index=True) |
|
dataset = CharField(max_length=15, index=True, choices=[ |
|
'ptb', |
|
'wikitext-2' |
|
]) |
|
|
|
class Meta: |
|
database = db |
|
|
|
class NlpTrialStats(Model): |
|
""" |
|
Computation statistics for NAS-NLP-Benchmark. |
|
Each corresponds to one trial result after 50 epoch. |
|
|
|
Attributes |
|
---------- |
|
config : NlpTrialConfig |
|
Corresponding config for trial. |
|
train_loss : float or None |
|
Final loss on training data. Could be NaN (None). |
|
val_loss : float or None |
|
Final loss on validation data. Could be NaN (None). |
|
test_loss : float or None |
|
Final loss on test data. Could be NaN (None). |
|
training_time : float |
|
Time elapsed in seconds. aka wall_time in in NAS-NLP-Benchmark repo. |
|
""" |
|
config = ForeignKeyField(NlpTrialConfig, backref='trial_stats', index=True) |
|
train_loss = FloatField(null=True) |
|
val_loss = FloatField(null=True) |
|
test_loss = FloatField(null=True) |
|
training_time = FloatField(null=True) |
|
|
|
class Meta: |
|
database = db |
|
|
|
class NlpIntermediateStats(Model): |
|
""" |
|
Computation statistics for NAS-NLP-Benchmark. |
|
Each corresponds to one trial result for 1-50 epoch. |
|
|
|
Attributes |
|
---------- |
|
config : NlpTrialConfig |
|
Corresponding config for trial. |
|
train_loss : float or None |
|
Final loss on training data. Could be NaN (None). |
|
val_loss : float or None |
|
Final loss on validation data. Could be NaN (None). |
|
test_loss : float or None |
|
Final loss on test data. Could be NaN (None). |
|
training_time : float |
|
Time elapsed in seconds. aka wall_time in in NAS-NLP-Benchmark repo. |
|
""" |
|
trial = ForeignKeyField(NlpTrialStats, backref='intermediates', index=True) |
|
current_epoch = IntegerField(index=True) |
|
train_loss = FloatField(null=True) |
|
val_loss = FloatField(null=True) |
|
test_loss = FloatField(null=True) |
|
training_time = FloatField(null=True) |
|
|
|
class Meta: |
|
database = db |
|
|