EdgeTA / utils /third_party /nni_new /parameter_expressions.py
LINC-BIT's picture
Upload 1912 files
b84549f verified
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
'''
parameter_expression.py
'''
import numpy as np
def choice(options, random_state):
'''
options: 1-D array-like or int
random_state: an object of numpy.random.RandomState
'''
return random_state.choice(options)
def randint(lower, upper, random_state):
'''
Generate a random integer from `lower` (inclusive) to `upper` (exclusive).
lower: an int that represent an lower bound
upper: an int that represent an upper bound
random_state: an object of numpy.random.RandomState
'''
return random_state.randint(lower, upper)
def uniform(low, high, random_state):
'''
low: an float that represent an lower bound
high: an float that represent an upper bound
random_state: an object of numpy.random.RandomState
'''
assert high >= low, 'Upper bound must be larger than lower bound'
return random_state.uniform(low, high)
def quniform(low, high, q, random_state):
'''
low: an float that represent an lower bound
high: an float that represent an upper bound
q: sample step
random_state: an object of numpy.random.RandomState
'''
return np.clip(np.round(uniform(low, high, random_state) / q) * q, low, high)
def loguniform(low, high, random_state):
'''
low: an float that represent an lower bound
high: an float that represent an upper bound
random_state: an object of numpy.random.RandomState
'''
assert low > 0, 'Lower bound must be positive'
return np.exp(uniform(np.log(low), np.log(high), random_state))
def qloguniform(low, high, q, random_state):
'''
low: an float that represent an lower bound
high: an float that represent an upper bound
q: sample step
random_state: an object of numpy.random.RandomState
'''
return np.clip(np.round(loguniform(low, high, random_state) / q) * q, low, high)
def normal(mu, sigma, random_state):
'''
The probability density function of the normal distribution,
first derived by De Moivre and 200 years later by both Gauss and Laplace independently.
mu: float or array_like of floats
Mean (“centre”) of the distribution.
sigma: float or array_like of floats
Standard deviation (spread or “width”) of the distribution.
random_state: an object of numpy.random.RandomState
'''
return random_state.normal(mu, sigma)
def qnormal(mu, sigma, q, random_state):
'''
mu: float or array_like of floats
sigma: float or array_like of floats
q: sample step
random_state: an object of numpy.random.RandomState
'''
return np.round(normal(mu, sigma, random_state) / q) * q
def lognormal(mu, sigma, random_state):
'''
mu: float or array_like of floats
sigma: float or array_like of floats
random_state: an object of numpy.random.RandomState
'''
return np.exp(normal(mu, sigma, random_state))
def qlognormal(mu, sigma, q, random_state):
'''
mu: float or array_like of floats
sigma: float or array_like of floats
q: sample step
random_state: an object of numpy.random.RandomState
'''
return np.round(lognormal(mu, sigma, random_state) / q) * q