LINC-BIT's picture
Upload 1912 files
b84549f verified
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
"""
Model representation.
"""
import abc
import json
from enum import Enum
from typing import (Any, Dict, Iterable, List, Optional, Tuple, Type, Union, overload)
from .operation import Cell, Operation, _IOPseudoOperation
from .utils import get_importable_name, import_, uid
__all__ = ['Model', 'ModelStatus', 'Graph', 'Node', 'Edge', 'Mutation', 'IllegalGraphError', 'MetricData']
MetricData = Any
"""
Type hint for graph metrics (loss, accuracy, etc).
"""
EdgeEndpoint = Tuple['Node', Optional[int]]
"""
Type hint for edge's endpoint. The int indicates nodes' order.
"""
class Evaluator(abc.ABC):
"""
Evaluator of a model. An evaluator should define where the training code is, and the configuration of
training code. The configuration includes basic runtime information trainer needs to know (such as number of GPUs)
or tune-able parameters (such as learning rate), depending on the implementation of training code.
Each config should define how it is interpreted in ``_execute()``, taking only one argument which is the mutated model class.
For example, functional evaluator might directly import the function and call the function.
"""
def __repr__(self):
items = ', '.join(['%s=%r' % (k, v) for k, v in self.__dict__.items()])
return f'{self.__class__.__name__}({items})'
@abc.abstractstaticmethod
def _load(ir: Any) -> 'Evaluator':
pass
@staticmethod
def _load_with_type(type_name: str, ir: Any) -> 'Optional[Evaluator]':
if type_name == '_debug_no_trainer':
return DebugEvaluator()
config_cls = import_(type_name)
assert issubclass(config_cls, Evaluator)
return config_cls._load(ir)
@abc.abstractmethod
def _dump(self) -> Any:
pass
@abc.abstractmethod
def _execute(self, model_cls: type) -> Any:
pass
@abc.abstractmethod
def __eq__(self, other) -> bool:
pass
class Model:
"""
Represents a neural network model.
During mutation, one `Model` object is created for each trainable snapshot.
For example, consider a mutator that insert a node at an edge for each iteration.
In one iteration, the mutator invokes 4 primitives: add node, remove edge, add edge to head, add edge to tail.
These 4 primitives operates in one `Model` object.
When they are all done the model will be set to "frozen" (trainable) status and be submitted to execution engine.
And then a new iteration starts, and a new `Model` object is created by forking last model.
Attributes
----------
python_class
Python class that base model is converted from.
python_init_params
Initialization parameters of python class.
status
See `ModelStatus`.
root_graph
The outermost graph which usually takes dataset as input and feeds output to loss function.
graphs
All graphs (subgraphs) in this model.
evaluator
Model evaluator
history
Mutation history.
`self` is directly mutated from `self.history[-1]`;
`self.history[-1] is mutated from `self.history[-2]`, and so on.
`self.history[0]` is the base graph.
metric
Training result of the model, or `None` if it's not yet trained or has failed to train.
intermediate_metrics
Intermediate training metrics. If the model is not trained, it's an empty list.
"""
def __init__(self, _internal=False):
assert _internal, '`Model()` is private, use `model.fork()` instead'
self.model_id: int = uid('model')
self.python_class: Optional[Type] = None
self.python_init_params: Optional[Dict[str, Any]] = None
self.status: ModelStatus = ModelStatus.Mutating
self._root_graph_name: str = '_model'
self.graphs: Dict[str, Graph] = {}
self.evaluator: Optional[Evaluator] = None
self.history: List[Model] = []
self.metric: Optional[MetricData] = None
self.intermediate_metrics: List[MetricData] = []
def __repr__(self):
return f'Model(model_id={self.model_id}, status={self.status}, graphs={list(self.graphs.keys())}, ' + \
f'evaluator={self.evaluator}, metric={self.metric}, intermediate_metrics={self.intermediate_metrics}, ' + \
f'python_class={self.python_class})'
@property
def root_graph(self) -> 'Graph':
return self.graphs[self._root_graph_name]
def fork(self) -> 'Model':
"""
Create a new model which has same topology, names, and IDs to current one.
Can only be invoked on a frozen model.
The new model will be in `Mutating` state.
This API is used in mutator base class.
"""
new_model = Model(_internal=True)
new_model._root_graph_name = self._root_graph_name
new_model.python_class = self.python_class
new_model.python_init_params = self.python_init_params
new_model.graphs = {name: graph._fork_to(new_model) for name, graph in self.graphs.items()}
new_model.evaluator = self.evaluator # TODO this needs a clever copy (not deepcopy) if we need mutation
new_model.history = [*self.history]
# Note: the history is not updated. It will be updated when the model is changed, that is in mutator.
return new_model
@staticmethod
def _load(ir: Any) -> 'Model':
model = Model(_internal=True)
for graph_name, graph_data in ir.items():
if graph_name != '_evaluator':
Graph._load(model, graph_name, graph_data)._register()
if '_evaluator' in ir:
model.evaluator = Evaluator._load_with_type(ir['_evaluator']['__type__'], ir['_evaluator'])
return model
def _dump(self) -> Any:
ret = {name: graph._dump() for name, graph in self.graphs.items()}
if self.evaluator is not None:
ret['_evaluator'] = {
'__type__': get_importable_name(self.evaluator.__class__),
**self.evaluator._dump()
}
return ret
def get_nodes(self) -> Iterable['Node']:
"""
Traverse through all the nodes.
"""
for graph in self.graphs.values():
for node in graph.nodes:
yield node
def get_nodes_by_label(self, label: str) -> List['Node']:
"""
Traverse all the nodes to find the matched node(s) with the given label.
There could be multiple nodes with the same label. Name space name can uniquely
identify a graph or node.
NOTE: the implementation does not support the class abstration
"""
matched_nodes = []
for graph in self.graphs.values():
nodes = graph.get_nodes_by_label(label)
matched_nodes.extend(nodes)
return matched_nodes
def get_nodes_by_type(self, type_name: str) -> List['Node']:
"""
Traverse all the nodes to find the matched node(s) with the given type.
"""
matched_nodes = []
for graph in self.graphs.values():
nodes = graph.get_nodes_by_type(type_name)
matched_nodes.extend(nodes)
return matched_nodes
def get_node_by_name(self, node_name: str) -> 'Node':
"""
Traverse all the nodes to find the matched node with the given name.
"""
matched_nodes = []
for graph in self.graphs.values():
nodes = graph.get_nodes_by_name(node_name)
matched_nodes.extend(nodes)
assert len(matched_nodes) <= 1
if matched_nodes:
return matched_nodes[0]
else:
return None
class ModelStatus(Enum):
"""
The status of model.
A model is created in `Mutating` status.
When the mutation is done and the model get ready to train, its status becomes `Frozen`.
When training started, the model's status becomes `Training`.
If training is successfully ended, model's `metric` attribute get set and its status becomes `Trained`.
If training failed, the status becomes `Failed`.
"""
Mutating = "mutating"
Frozen = "frozen"
Training = "training"
Trained = "trained"
Failed = "failed"
_InputPseudoUid = -1
_OutputPseudoUid = -2
class Graph:
"""
Graph topology.
This class simply represents the topology, with no semantic meaning.
All other information like metric, non-graph functions, mutation history, etc should go to `Model`.
Each graph belongs to and only belongs to one `Model`.
Attributes
----------
model
The model containing (and owning) this graph.
id
Unique ID in the model.
If two models have graphs of identical ID, they are semantically the same graph.
Typically this means one graph is mutated from another, or they are both mutated from one ancestor.
name
Mnemonic name of this graph. It should have an one-to-one mapping with ID.
input_names
Optional mnemonic names of input parameters.
output_names
Optional mnemonic names of output values.
input_node
...
output_node
...
hidden_nodes
...
nodes
All input/output/hidden nodes.
edges
...
"""
def __init__(self, model: Model, graph_id: int, name: str = None, _internal: bool = False):
assert _internal, '`Graph()` is private'
self.model: Model = model
self.id: int = graph_id
self.name: str = name or f'_generated_{graph_id}'
self.input_node: Node = Node(self, _InputPseudoUid, '_inputs', _IOPseudoOperation('_inputs'), _internal=True)
self.output_node: Node = Node(self, _OutputPseudoUid, '_outputs', _IOPseudoOperation('_outputs'), _internal=True)
self.hidden_nodes: List[Node] = []
self.edges: List[Edge] = []
def __repr__(self):
return f'Graph(id={self.id}, name={self.name}, ' + \
f'input_names={self.input_node.operation.io_names}, ' + \
f'output_names={self.output_node.operation.io_names}, ' + \
f'num_hidden_nodes={len(self.hidden_nodes)}, num_edges={len(self.edges)})'
@property
def nodes(self) -> List['Node']:
return [self.input_node, self.output_node] + self.hidden_nodes
def _add_input(self, input_name) -> None:
if self.input_node.operation.io_names is None:
self.input_node.operation.io_names = [input_name]
else:
self.input_node.operation.io_names.append(input_name)
def _add_output(self, output_name) -> None:
if self.output_node.operation.io_names is None:
self.output_node.operation.io_names = [output_name]
else:
self.output_node.operation.io_names.append(output_name)
@overload
def add_node(self, name: str, operation: Operation) -> 'Node': ...
@overload
def add_node(self, name: str, type_name: str, parameters: Dict[str, Any] = {}) -> 'Node': ...
def add_node(self, name, operation_or_type, parameters={}):
if isinstance(operation_or_type, Operation):
op = operation_or_type
else:
op = Operation.new(operation_or_type, parameters, name)
return Node(self, uid(), name, op, _internal=True)._register()
@overload
def insert_node_on_edge(self, edge: 'Edge', name: str, operation: Operation) -> 'Node': ...
@overload
def insert_node_on_edge(self, edge: 'Edge', name: str, type_name: str, parameters: Dict[str, Any] = {}) -> 'Node': ...
def insert_node_on_edge(self, edge, name, operation_or_type, parameters={}) -> 'Node':
if isinstance(operation_or_type, Operation):
op = operation_or_type
else:
op = Operation.new(operation_or_type, parameters, name)
new_node = Node(self, uid(), name, op, _internal=True)._register()
# update edges
self.add_edge((edge.head, edge.head_slot), (new_node, None))
self.add_edge((new_node, None), (edge.tail, edge.tail_slot))
self.del_edge(edge)
return new_node
# mutation
def add_edge(self, head: EdgeEndpoint, tail: EdgeEndpoint) -> 'Edge':
assert head[0].graph is self and tail[0].graph is self
return Edge(head, tail, _internal=True)._register()
def del_edge(self, edge: 'Edge') -> None:
self.edges.remove(edge)
def get_node_by_name(self, name: str) -> Optional['Node']:
"""
Returns the node which has specified name; or returns `None` if no node has this name.
"""
found = [node for node in self.nodes if node.name == name]
return found[0] if found else None
def get_nodes_by_type(self, operation_type: str) -> List['Node']:
"""
Returns nodes whose operation is specified typed.
"""
return [node for node in self.hidden_nodes if node.operation.type == operation_type]
def get_node_by_id(self, node_id: int) -> Optional['Node']:
"""
Returns the node which has specified name; or returns `None` if no node has this name.
"""
found = [node for node in self.nodes if node.id == node_id]
return found[0] if found else None
def get_nodes_by_label(self, label: str) -> List['Node']:
return [node for node in self.hidden_nodes if node.label == label]
def get_nodes_by_name(self, name: str) -> List['Node']:
return [node for node in self.hidden_nodes if node.name == name]
def topo_sort(self) -> List['Node']:
node_to_fanin = {}
curr_nodes = []
for node in self.nodes:
fanin = len(node.incoming_edges)
node_to_fanin[node] = fanin
if fanin == 0:
curr_nodes.append(node)
sorted_nodes = []
while curr_nodes:
curr_node = curr_nodes.pop(0)
sorted_nodes.append(curr_node)
# use successor_slots because a node may connect to another node multiple times
# to different slots
for successor_slot in curr_node.successor_slots:
successor = successor_slot[0]
node_to_fanin[successor] -= 1
if node_to_fanin[successor] == 0:
curr_nodes.append(successor)
for key in node_to_fanin:
assert node_to_fanin[key] == 0, '{}, fanin: {}, predecessor: {}, edges: {}, fanin: {}, keys: {}'.format(
key,
node_to_fanin[key],
key.predecessors[0],
self.edges,
node_to_fanin.values(),
node_to_fanin.keys())
return sorted_nodes
def fork(self) -> 'Graph':
"""
Fork the model and returns corresponding graph in new model.
This shortcut might be helpful because many algorithms only cares about "stem" subgraph instead of whole model.
"""
return self.model.fork().graphs[self.name]
def __eq__(self, other: object) -> bool:
return self is other
def _fork_to(self, model: Model, name_prefix='') -> 'Graph':
new_graph = Graph(model, self.id, name_prefix+self.name, _internal=True)._register()
# TODO: use node copy instead
new_graph.input_node.operation.io_names = self.input_node.operation.io_names
new_graph.output_node.operation.io_names = self.output_node.operation.io_names
new_graph.input_node.update_label(self.input_node.label)
new_graph.output_node.update_label(self.output_node.label)
for node in self.hidden_nodes:
new_node = Node(new_graph, node.id, node.name, node.operation, _internal=True)
new_node.update_label(node.label)
new_node._register()
id_to_new_node = {node.id: node for node in new_graph.nodes}
for edge in self.edges:
new_head = id_to_new_node[edge.head.id]
new_tail = id_to_new_node[edge.tail.id]
Edge((new_head, edge.head_slot), (new_tail, edge.tail_slot), _internal=True)._register()
return new_graph
def _copy(self) -> 'Graph':
# Copy this graph inside the model.
# The new graph will have identical topology, but its nodes' name and ID will be different.
new_graph = Graph(self.model, uid(), _internal=True)._register()
new_graph.input_node.operation.io_names = self.input_node.operation.io_names
new_graph.output_node.operation.io_names = self.output_node.operation.io_names
new_graph.input_node.update_label(self.input_node.label)
new_graph.output_node.update_label(self.output_node.label)
id_to_new_node = {} # old node ID -> new node object
for old_node in self.hidden_nodes:
new_node = Node(new_graph, uid(), None, old_node.operation, _internal=True)._register()
new_node.update_label(old_node.label)
id_to_new_node[old_node.id] = new_node
for edge in self.edges:
new_head = id_to_new_node[edge.head.id]
new_tail = id_to_new_node[edge.tail.id]
Edge((new_head, edge.head_slot), (new_tail, edge.tail_slot), _internal=True)._register()
return new_graph
def _register(self) -> 'Graph':
self.model.graphs[self.name] = self
return self
@staticmethod
def _load(model: Model, name: str, ir: Any) -> 'Graph':
graph = Graph(model, uid(), name, _internal=True)
graph.input_node.operation.io_names = ir.get('inputs')
graph.output_node.operation.io_names = ir.get('outputs')
for node_name, node_data in ir['nodes'].items():
Node._load(graph, node_name, node_data)._register()
for edge_data in ir['edges']:
Edge._load(graph, edge_data)._register()
return graph
def _dump(self) -> Any:
return {
'inputs': self.input_node.operation.io_names,
'outputs': self.output_node.operation.io_names,
'nodes': {node.name: node._dump() for node in self.hidden_nodes},
'edges': [edge._dump() for edge in self.edges]
}
class Node:
"""
An operation or an opaque subgraph inside a graph.
Each node belongs to and only belongs to one `Graph`.
Nodes should never be created with constructor. Use `Graph.add_node()` instead.
The node itself is for topology only.
Information of tensor calculation should all go inside `operation` attribute.
TODO: parameter of subgraph (cell)
It's easy to assign parameters on cell node, but it's hard to "use" them.
We need to design a way to reference stored cell parameters in inner node operations.
e.g. `self.fc = Linear(self.units)` <- how to express `self.units` in IR?
Attributes
----------
graph
The graph containing this node.
id
Unique ID in the model.
If two models have nodes with same ID, they are semantically the same node.
name
Mnemonic name. It should have an one-to-one mapping with ID.
label
Optional. If two nodes have the same label, they are considered same by the mutator.
operation
...
cell
Read only shortcut to get the referenced subgraph.
If this node is not a subgraph (is a primitive operation), accessing `cell` will raise an error.
predecessors
Predecessor nodes of this node in the graph. This is an optional mutation helper.
successors
Successor nodes of this node in the graph. This is an optional mutation helper.
incoming_edges
Incoming edges of this node in the graph. This is an optional mutation helper.
outgoing_edges
Outgoing edges of this node in the graph. This is an optional mutation helper.
"""
def __init__(self, graph, node_id, name, operation, _internal=False):
self.graph: Graph = graph
self.id: int = node_id
self.name: str = name or f'_generated_{node_id}'
# TODO: the operation is likely to be considered editable by end-user and it will be hard to debug
# maybe we should copy it here or make Operation class immutable, in next release
self.operation: Operation = operation
self.label: Optional[str] = None
def __repr__(self):
return f'Node(id={self.id}, name={self.name}, label={self.label}, operation={self.operation})'
@property
def predecessors(self) -> List['Node']:
return sorted(set(edge.head for edge in self.incoming_edges), key=(lambda node: node.id))
@property
def successors(self) -> List['Node']:
return sorted(set(edge.tail for edge in self.outgoing_edges), key=(lambda node: node.id))
@property
def successor_slots(self) -> List[Tuple['Node', Union[int, None]]]:
return set((edge.tail, edge.tail_slot) for edge in self.outgoing_edges)
@property
def incoming_edges(self) -> List['Edge']:
return [edge for edge in self.graph.edges if edge.tail is self]
@property
def outgoing_edges(self) -> List['Edge']:
return [edge for edge in self.graph.edges if edge.head is self]
@property
def cell(self) -> Graph:
assert isinstance(self.operation, Cell)
return self.graph.model.graphs[self.operation.parameters['cell']]
def update_label(self, label: str) -> None:
self.label = label
@overload
def update_operation(self, operation: Operation) -> None: ...
@overload
def update_operation(self, type_name: str, parameters: Dict[str, Any] = {}) -> None: ...
def update_operation(self, operation_or_type, parameters={}):
if isinstance(operation_or_type, Operation):
self.operation = operation_or_type
else:
self.operation = Operation.new(operation_or_type, parameters)
# mutation
def remove(self) -> None:
assert not self.incoming_edges and not self.outgoing_edges
self.graph.hidden_nodes.remove(self)
# mutation
def specialize_cell(self) -> Graph:
"""
Only available if the operation is a cell.
Duplicate the cell template and let this node reference to newly created copy.
"""
new_cell = self.cell._copy()._register()
self.operation = Cell(new_cell.name)
return new_cell
def __eq__(self, other: object) -> bool:
return self is other
def __hash__(self) -> int:
return hash(id(self))
def _register(self) -> 'Node':
self.graph.hidden_nodes.append(self)
return self
@staticmethod
def _load(graph: Graph, name: str, ir: Any) -> 'Node':
if ir['operation']['type'] == '_cell':
op = Cell(ir['operation']['cell_name'], ir['operation'].get('parameters', {}))
else:
op = Operation.new(ir['operation']['type'], ir['operation'].get('parameters', {}))
node = Node(graph, uid(), name, op)
if 'label' in ir:
node.update_label(ir['label'])
return node
def _dump(self) -> Any:
ret = {'operation': {'type': self.operation.type, 'parameters': self.operation.parameters}}
if isinstance(self.operation, Cell):
ret['operation']['cell_name'] = self.operation.cell_name
if self.label is not None:
ret['label'] = self.label
return ret
class Edge:
"""
A tensor, or "data flow", between two nodes.
Example forward code snippet:
```
a, b, c = split(x)
p = concat(a, c)
q = sum(b, p)
z = relu(q)
```
Edges in above snippet:
+ head: (split, 0), tail: (concat, 0) # a in concat
+ head: (split, 2), tail: (concat, 1) # c in concat
+ head: (split, 1), tail: (sum, -1 or 0) # b in sum
+ head: (concat, null), tail: (sum, -1 or 1) # p in sum
+ head: (sum, null), tail: (relu, null) # q in relu
Attributes
----------
graph
...
head
Head node.
tail
Tail node.
head_slot
Index of outputs in head node.
If the node has only one output, this should be `null`.
tail_slot
Index of inputs in tail node.
If the node has only one input, this should be `null`.
If the node does not care about order, this can be `-1`.
"""
def __init__(self, head: EdgeEndpoint, tail: EdgeEndpoint, _internal: bool = False):
assert _internal, '`Edge()` is private'
self.graph: Graph = head[0].graph
self.head: Node = head[0]
self.tail: Node = tail[0]
self.head_slot: Optional[int] = head[1]
self.tail_slot: Optional[int] = tail[1]
def __repr__(self):
return f'Edge(head=({self.head}, {self.head_slot}), tail=({self.tail}, {self.tail_slot}))'
# mutation
def remove(self) -> None:
self.graph.edges.remove(self)
def _register(self) -> 'Edge':
self.graph.edges.append(self)
return self
@staticmethod
def _load(graph: Graph, ir: Any) -> 'Edge':
head = graph.get_node_by_name(ir['head'][0])
tail = graph.get_node_by_name(ir['tail'][0])
assert head is not None and tail is not None
return Edge((head, ir['head'][1]), (tail, ir['tail'][1]), _internal=True)
def _dump(self) -> Any:
return {
'head': [self.head.name, self.head_slot],
'tail': [self.tail.name, self.tail_slot]
}
class Mutation:
"""
An execution of mutation, which consists of four parts: a mutator, a list of decisions (choices),
the model that it comes from, and the model that it becomes.
In general cases, the mutation logs are not reliable and should not be replayed as the mutators can
be arbitrarily complex. However, for inline mutations, the labels correspond to mutator labels here,
this can be useful for metadata visualization and python execution mode.
Attributes
----------
mutator
Mutator.
samples
Decisions/choices.
from_
Model that is comes from.
to
Model that it becomes.
"""
def __init__(self, mutator: 'Mutator', samples: List[Any], from_: Model, to: Model): # noqa: F821
self.mutator: 'Mutator' = mutator # noqa: F821
self.samples: List[Any] = samples
self.from_: Model = from_
self.to: Model = to
def __repr__(self):
return f'Edge(mutator={self.mutator}, samples={self.samples}, from={self.from_}, to={self.to})'
class IllegalGraphError(ValueError):
def __init__(self, graph, *args):
self._debug_dump_graph(graph)
super().__init__(*args)
@staticmethod
def _debug_dump_graph(graph):
if isinstance(graph, Graph):
graph = graph._dump()
with open('generated/debug.json', 'w') as dump_file:
json.dump(graph, dump_file, indent=4)
class DebugEvaluator(Evaluator):
@staticmethod
def _load(ir: Any) -> 'DebugEvaluator':
return DebugEvaluator()
def _dump(self) -> Any:
return {'__type__': '_debug_no_trainer'}
def _execute(self, model_cls: type) -> Any:
pass
def __eq__(self, other) -> bool:
return True