from typing import Any, Dict from schema import Schema from data import Scenario, MergedDataset from methods.base.alg import BaseAlg from data import build_dataloader from ..model import ElasticDNN_OfflineFMModel from ...model.base import ElasticDNNUtil import torch.optim import tqdm from torch import nn from torchvision.transforms import Compose from utils.dl.common.env import create_tbwriter import os import random import numpy as np from copy import deepcopy from utils.dl.common.model import get_module from utils.common.log import logger class ElasticDNN_FMLoRAAlg(BaseAlg): def get_required_models_schema(self) -> Schema: return Schema({ 'fm': ElasticDNN_OfflineFMModel }) def get_required_hyp_schema(self) -> Schema: from schema import Optional return Schema({ 'launch_tbboard': bool, 'samples_size': object, 'ab_r': int, 'train_batch_size': int, 'val_batch_size': int, 'num_workers': int, 'optimizer': str, 'optimizer_args': dict, 'scheduler': str, 'scheduler_args': dict, 'num_iters': int, 'val_freq': int, Optional('fm_lora_ckpt_path'): str, Optional('transform'): Compose, }) def run(self, scenario: Scenario, hyps: Dict, collate_fn=None) -> Dict[str, Any]: super().run(scenario, hyps) assert isinstance(self.models['fm'], ElasticDNN_OfflineFMModel) # for auto completion # 1. add LoRA lora_util = self.models['fm'].get_lora_util() device = self.models['fm'].device sample = hyps['samples_size'] if isinstance(sample, (tuple, list)) and isinstance(sample[0], int): sample = torch.rand(hyps['samples_size']).to(device) lora_util.add_lora_ab_to_fm(self.models['fm'].models_dict['main'], hyps['ab_r'], sample) if 'fm_lora_ckpt_path' in hyps.keys() and hyps['fm_lora_ckpt_path'] != '' and hyps['fm_lora_ckpt_path'] is not None: _ckpt = torch.load(hyps['fm_lora_ckpt_path'])['main'] new_state_dict = deepcopy(self.models['fm'].models_dict['main'].state_dict()) for n, p in _ckpt.named_parameters(): if 'qkv.abs' not in n: continue new_state_dict[n] = p logger.info(f'use {n} from ckpt') self.models['fm'].models_dict['main'].load_state_dict(new_state_dict) # 2. train (knowledge distillation, index relationship) if 'transform' in hyps.keys(): offline_datasets = scenario.get_offline_datasets(transform=hyps['transform']) else: offline_datasets = scenario.get_offline_datasets() train_dataset = MergedDataset([d['train'] for d in offline_datasets.values()]) # debug # from data.visualize import visualize_classes_in_object_detection # d = offline_datasets['GTA5Det']['val'] # class_to_idx_map = {c: d.idx_map[i] for i, c in enumerate(d.classes)} # print(class_to_idx_map) # visualize_classes_in_object_detection(d, class_to_idx_map, # {}, os.path.join(self.res_save_dir, 'debug.png')) # exit() val_dataset = MergedDataset([d['val'] for d in offline_datasets.values()]) train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'], True, None, collate_fn=collate_fn)) # if hyps['use_train_loader_for_val']: # val_loader = build_dataloader(train_dataset, hyps['val_batch_size'], hyps['num_workers'], # False, False) # logger.warn('use train loader for val!!!') # else: val_loader = build_dataloader(val_dataset, hyps['val_batch_size'], hyps['num_workers'], False, False, collate_fn=collate_fn) lora_params = lora_util.train_only_lora(self.models['fm'].models_dict['main']) head_params = self.models['fm'].get_task_head_params() num_lora_params = sum([np.prod(p.size()) for p in lora_params]) total_params = sum([np.prod(p.size()) for p in self.models['fm'].models_dict['main'].parameters()]) logger.info(f'num lora params: {num_lora_params}, total params: {total_params}, ratio: {num_lora_params / total_params}') optimizer = torch.optim.__dict__[hyps['optimizer']](lora_params + head_params, **hyps['optimizer_args']) scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args']) fbs_tb_writer = create_tbwriter(os.path.join(self.res_save_dir, 'tb_log'), launch_tbboard=hyps['launch_tbboard']) pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True) best_val_acc = 0 val_acc = 0 for iter_index in pbar: self.models['fm'].to_train_mode() x, y = next(train_loader) if isinstance(x, dict): for k, v in x.items(): if isinstance(v, torch.Tensor): x[k] = v.to(device) y = y.to(device) else: x, y = x.to(device), y.to(device) task_loss = self.models['fm'].forward_to_get_task_loss(x, y) optimizer.zero_grad() task_loss.backward() optimizer.step() scheduler.step() if (iter_index + 1) % hyps['val_freq'] == 0: # logger.warn('use train loader for val!!!') self.models['fm'].to_eval_mode() val_acc = self.models['fm'].get_accuracy(val_loader) self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_last.pt')) if val_acc > best_val_acc: best_val_acc = val_acc self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_best.pt')) fbs_tb_writer.add_scalar(f'losses/task_loss', task_loss, iter_index) fbs_tb_writer.add_scalar(f'accs/val_acc', val_acc, iter_index) fbs_tb_writer.add_scalar(f'lr', optimizer.param_groups[0]['lr'], iter_index) pbar.set_description(f'loss: {task_loss:.6f}, val_acc: {val_acc:.4f}')