from typing import Any, Dict, List from schema import Schema from data import Scenario, MergedDataset from methods.base.alg import BaseAlg from methods.base.model import BaseModel from data import build_dataloader import torch.optim import tqdm import os import time from abc import abstractmethod import matplotlib.pyplot as plt from copy import deepcopy from torch import nn import torch.optim def tent_as_detector(online_model, x, num_iters=1, lr=1e-4, l1_wd=0., strategy='ours'): model = online_model.models_dict['main'] before_model = deepcopy(model) # from methods.tent import tent optimizer = torch.optim.SGD( model.parameters(), lr=lr, weight_decay=l1_wd) # from .tent import configure_model, forward_and_adapt # configure_model(model) output = online_model.infer(x) entropy = online_model.get_output_entropy(output).mean() entropy.backward() # for _ in range(num_iters): # forward_and_adapt(x, model, optimizer) # entropy_loss = model. filters_sen_info = {} last_conv_name = None for (name, m1), m2 in zip(model.named_modules(), before_model.modules()): if isinstance(m1, nn.Linear): last_conv_name = name if not isinstance(m1, nn.LayerNorm): continue with torch.no_grad(): features_weight_diff = ((m1.weight.data - m2.weight.data).abs()) features_bias_diff = ((m1.bias.data - m2.bias.data).abs()) features_diff = features_weight_diff + features_bias_diff features_diff_order = features_diff.argsort(descending=False) if strategy == 'ours': untrained_filters_index = features_diff_order[: int(len(features_diff) * 0.8)] elif strategy == 'random': untrained_filters_index = torch.randperm(len(features_diff))[: int(len(features_diff) * 0.8)] elif strategy == 'inversed_ours': untrained_filters_index = features_diff_order.flip(0)[: int(len(features_diff) * 0.8)] elif strategy == 'none': untrained_filters_index = None filters_sen_info[name] = dict(untrained_filters_index=untrained_filters_index, conv_name=last_conv_name) return filters_sen_info class SGDF(torch.optim.SGD): @torch.no_grad() def step(self, p_names, conv_filters_sen_info, filters_sen_info, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] # assert len([i for i in model.named_parameters()]) == len([j for j in group['params']]) for name, p in zip(p_names, group['params']): if p.grad is None: continue layer_name = '.'.join(name.split('.')[0:-1]) if layer_name in filters_sen_info.keys(): untrained_filters_index = filters_sen_info[layer_name]['untrained_filters_index'] elif layer_name in conv_filters_sen_info.keys(): untrained_filters_index = conv_filters_sen_info[layer_name]['untrained_filters_index'] else: untrained_filters_index = [] d_p = p.grad if weight_decay != 0: d_p = d_p.add(p, alpha=weight_decay) if momentum != 0: param_state = self.state[p] if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.clone(d_p).detach() else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: d_p = d_p.add(buf, alpha=momentum) else: d_p = buf try: d_p[untrained_filters_index] = 0. p.add_(d_p, alpha=-group['lr']) except Exception as e: print('SGDF error', name) return loss class OnlineFeatAlignModel(BaseModel): def get_required_model_components(self) -> List[str]: return ['main'] @abstractmethod def get_feature_hook(self): pass @abstractmethod def forward_to_get_task_loss(self, x, y): pass @abstractmethod def get_trained_params(self): pass @abstractmethod def get_mmd_loss(self, f1, f2): pass @abstractmethod def get_output_entropy(self, output): pass class FeatAlignAlg(BaseAlg): def get_required_models_schema(self) -> Schema: return Schema({ 'main': OnlineFeatAlignModel }) def get_required_hyp_schema(self) -> Schema: return Schema({ 'train_batch_size': int, 'val_batch_size': int, 'num_workers': int, 'optimizer': str, 'optimizer_args': dict, 'scheduler': str, 'scheduler_args': dict, 'num_iters': int, 'val_freq': int, 'feat_align_loss_weight': float, 'trained_neuron_selection_strategy': str }) def run(self, scenario: Scenario, hyps: Dict) -> Dict[str, Any]: super().run(scenario, hyps) assert isinstance(self.models['main'], OnlineFeatAlignModel) # for auto completion cur_domain_name = scenario.target_domains_order[scenario.cur_domain_index] datasets_for_training = scenario.get_online_cur_domain_datasets_for_training() train_dataset = datasets_for_training[cur_domain_name]['train'] val_dataset = datasets_for_training[cur_domain_name]['val'] datasets_for_inference = scenario.get_online_cur_domain_datasets_for_inference() test_dataset = datasets_for_inference train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'], True, None)) test_loader = build_dataloader(test_dataset, hyps['val_batch_size'], hyps['num_workers'], False, False) source_datasets = [d['train'] for n, d in datasets_for_training.items() if n != cur_domain_name] source_dataset = MergedDataset(source_datasets) source_train_loader = iter(build_dataloader(source_dataset, hyps['train_batch_size'], hyps['num_workers'], True, None)) # 1. generate surrogate DNN # for n, m in self.models['main'].models_dict['md'].named_modules(): # if isinstance(m, nn.Linear): # m.reset_parameters() # from utils.dl.common.model import set_module # for n, m in self.models['main'].models_dict['md'].named_modules(): # if m.__class__.__name__ == 'KTakesAll': # set_module(self.models['main'].models_dict['md'], n, KTakesAll(0.5)) # self.models['main'].set_sd_sparsity(hyps['sd_sparsity']) device = self.models['main'].device # surrogate_dnn = self.models['main'].generate_sd_by_target_samples(next(train_loader)[0].to(device)) # self.models['sd'] = surrogate_dnn # 2. train surrogate DNN # TODO: train only a part of filters trained_params, p_name = self.models['main'].get_trained_params() # optimizer = torch.optim.__dict__[hyps['optimizer']](trained_params, **hyps['optimizer_args']) optimizer = SGDF(trained_params, **hyps['optimizer_args']) if hyps['scheduler'] != '': scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args']) else: scheduler = None pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True, desc='da...') task_losses, mmd_losses = [], [] accs = [] x, _ = next(train_loader) if isinstance(x, dict): for k, v in x.items(): if isinstance(v, torch.Tensor): x[k] = v.to(device) else: x = x.to(device) filters_sen_info = tent_as_detector(self.models['main'], x, strategy=hyps['trained_neuron_selection_strategy']) conv_filters_sen_info = {v['conv_name']: v for _, v in filters_sen_info.items()} total_train_time = 0. feature_hook = self.models['main'].get_feature_hook() for iter_index in pbar: if iter_index % hyps['val_freq'] == 0: from data import split_dataset cur_test_batch_dataset = split_dataset(test_dataset, hyps['val_batch_size'], iter_index)[0] cur_test_batch_dataloader = build_dataloader(cur_test_batch_dataset, hyps['train_batch_size'], hyps['num_workers'], False, False) cur_acc = self.models['main'].get_accuracy(cur_test_batch_dataloader) accs += [{ 'iter': iter_index, 'acc': cur_acc }] cur_start_time = time.time() self.models['main'].to_train_mode() x, _ = next(train_loader) if isinstance(x, dict): for k, v in x.items(): if isinstance(v, torch.Tensor): x[k] = v.to(device) else: x = x.to(device) source_x, source_y = next(source_train_loader) if isinstance(source_x, dict): for k, v in source_x.items(): if isinstance(v, torch.Tensor): source_x[k] = v.to(device) source_y = source_y.to(device) else: source_x, source_y = source_x.to(device), source_y.to(device) task_loss = self.models['main'].forward_to_get_task_loss(source_x, source_y) source_features = feature_hook.input self.models['main'].infer(x) target_features = feature_hook.input mmd_loss = hyps['feat_align_loss_weight'] * self.models['main'].get_mmd_loss(source_features, target_features) loss = task_loss + mmd_loss optimizer.zero_grad() loss.backward() # optimizer.step() optimizer.step(p_name, conv_filters_sen_info, filters_sen_info) if scheduler is not None: scheduler.step() pbar.set_description(f'da... | cur_acc: {cur_acc:.4f}, task_loss: {task_loss:.6f}, mmd_loss: {mmd_loss:.6f}') task_losses += [float(task_loss.cpu().item())] mmd_losses += [float(mmd_loss.cpu().item())] total_train_time += time.time() - cur_start_time feature_hook.remove() time_usage = total_train_time plt.plot(task_losses, label='task') plt.plot(mmd_losses, label='mmd') plt.xlabel('iteration') plt.ylabel('loss') plt.savefig(os.path.join(self.res_save_dir, 'loss.png')) plt.clf() cur_test_batch_dataset = split_dataset(test_dataset, hyps['train_batch_size'], iter_index + 1)[0] cur_test_batch_dataloader = build_dataloader(cur_test_batch_dataset, len(cur_test_batch_dataset), hyps['num_workers'], False, False) cur_acc = self.models['main'].get_accuracy(cur_test_batch_dataloader) accs += [{ 'iter': iter_index + 1, 'acc': cur_acc }] return { 'accs': accs, 'time': time_usage }, self.models